Definition (Weiestrass form of an Elliptic Curve)

Let *K* be a field of characteristic > 3. Then an **elliptic curve** E/K is a curve defined by a polynomial of the form

$$Y^2 = X^3 + aX + b$$

where $a, b \in K$ and $4a^3 + 27b^2 \neq 0$, along with a singular "point at infinity".

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Definition (Weiestrass form of an Elliptic Curve)

Let *K* be a field of characteristic > 3. Then an **elliptic curve** E/K is a curve defined by a polynomial of the form

$$Y^2 = X^3 + aX + b$$

where $a, b \in K$ and $4a^3 + 27b^2 \neq 0$, along with a singular "point at infinity".

Remark

Formally, an elliptic curve E/K is a projective algebraic variety of genus 1 with points in \mathbb{P}^2_K . Here, we have restricted the definition to nonsingular curves over finite fields.

Definition

The set of points (x, y) on the curve such that $x, y \in K$ is denoted by E(K).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Definition

The set of points (x, y) on the curve such that $x, y \in K$ is denoted by E(K).

For any field extension \overline{K}/K , we have that $E(\overline{K})$ forms an abelian group with the point at infinity as the identity.

Definition

The set of points (x, y) on the curve such that $x, y \in K$ is denoted by E(K).

For any field extension \overline{K}/K , we have that $E(\overline{K})$ forms an abelian group with the point at infinity as the identity.

Figure: Elliptic Curve Group Law

(日) (四) (日) (日) (日)

Structure of Elliptic Curves

Let
$$K = \mathbb{F}_q$$
 where $q = p^k$ for some prime p .

Theorem

 $E(\mathbb{F}_q)$ is either cyclic, or $E(\mathbb{F}_q)$ is isomorphic to $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$ with $n_1|n_2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Over *K*, two curves $y^2 = x^3 + ax + b$ and $y^2 = x^3 + a'x + b'$ are isomorphic if and only if $a' = u^4 a$ and $b' = u^6 b$ for some *u*.

Over K, two curves y² = x³ + ax + b and y² = x³ + a'x + b' are isomorphic if and only if a' = u⁴a and b' = u⁶b for some u.

Definition (J-invariant)

We define the *j*-invariant as

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}$$

• The *j*-invariant determines the isomorphism class of *E* over \overline{K}

Over K, two curves y² = x³ + ax + b and y² = x³ + a'x + b' are isomorphic if and only if a' = u⁴a and b' = u⁶b for some u.

Definition (J-invariant)

We define the *j*-invariant as

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}$$

The *j*-invariant determines the isomorphism class of *E* over *K* Two curves not isomorphic over *K* but isomorphic over *K* are said to be *twists*

Example

Let $E_1: y^2 = x^3 - 25x$ and $E_2: y^2 = x^3 - 4x$ over \mathbb{Q} . These two are not isomorphic over \mathbb{Q} , but over $\mathbb{Q}(\sqrt{10})$, we have the isomorphism

$$(x,y)\mapsto\left(\frac{10}{4}x,\frac{10\sqrt{10}}{8}y\right)$$

Example

Let $E_1: y^2 = x^3 - 25x$ and $E_2: y^2 = x^3 - 4x$ over \mathbb{Q} . These two are not isomorphic over \mathbb{Q} , but over $\mathbb{Q}(\sqrt{10})$, we have the isomorphism

$$(x,y)\mapsto\left(\frac{10}{4}x,\frac{10\sqrt{10}}{8}y\right)$$

Note that $j(E_1) = 1728$ and $j(E_2) = 1728$. Curves with *j*-invariant 0 or 1728 are special: they have extra automorphisms.

Definition (Isogeny)

An **isogeny** from E_1 to E_2 is a homomorphism between the two curves

$$\phi: E_1(K) \to E_2(K)$$

given by rational functions

$$(x, y) \mapsto (R_1(x, y), R_2(x, y))$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Definition (Isogeny)

An **isogeny** from E_1 to E_2 is a homomorphism between the two curves

$$\phi: E_1(K) \to E_2(K)$$

given by rational functions

$$(x, y) \mapsto (R_1(x, y), R_2(x, y))$$

• Every isogeny also induces a surjective group morphism from $E_1(\overline{K}) \to E_2(\overline{K})$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Definition (Isogeny)

An **isogeny** from E_1 to E_2 is a homomorphism between the two curves

$$\phi: E_1(K) \to E_2(K)$$

given by rational functions

$$(x, y) \mapsto (R_1(x, y), R_2(x, y))$$

- Every isogeny also induces a surjective group morphism from $E_1(\overline{K}) \to E_2(\overline{K})$.
- If there exists a nonzero isogeny E₁ → E₂, we say E₁ and E₂ are isogenous.

Definition (Isogeny)

An **isogeny** from E_1 to E_2 is a homomorphism between the two curves

$$\phi: E_1(K) \to E_2(K)$$

given by rational functions

$$(x, y) \mapsto (R_1(x, y), R_2(x, y))$$

- Every isogeny also induces a surjective group morphism from $E_1(\overline{K}) \to E_2(\overline{K})$.
- If there exists a nonzero isogeny E₁ → E₂, we say E₁ and E₂ are isogenous.
- Note that we can rewrite the map as $(r_1(x), y \cdot r_2(x))$

Definition (Degree)

The degree of an isogeny is defined as the degree of the rational map $r_1(x)$, or

 $\max \{ \deg p(x), \deg q(x) \}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where $r_1 = p/q$.

Definition (Degree)

The degree of an isogeny is defined as the degree of the rational map $r_1(x)$, or

 $\max \{ \deg p(x), \deg q(x) \}$

where $r_1 = p/q$.

Definition (Separable)

If the derivative $r'_1(x) \neq 0$, then we say the isogeny is **separable**.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

The multiplication by $n \text{ map } [n] : E \to E$ defined by

$$P \mapsto nP = P + P + \dots + P$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

is an isogeny from E to itself.

Example

The multiplication by $n \text{ map } [n] : E \to E$ defined by

$$P \mapsto nP = P + P + \dots + P$$

is an isogeny from E to itself.

Example

Let $E: y^2 = x^3 - x$ and $E': y^2 + x^3 + 4x$. Then E and E' are isogenous by the map

$$(x, y) \mapsto (y^2/x^2, y(1-x^2)/x^2)$$

Theorem Let α be a separable isogeny. Then

$$\operatorname{\mathsf{deg}} \alpha = \#\operatorname{\mathsf{Ker}}(\alpha)$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Theorem Let α be a separable isogeny. Then

 $\deg \alpha = \# \operatorname{Ker}(\alpha)$

Theorem

Given a finite subgroup $G \subseteq E_1(\mathbb{F}_q)$ there exists a unique separable isogeny $\alpha : E_1 \to E_2$ with kernel G. Moreover, it is efficient to compute such isogeny.

Theorem

For every $\alpha:E_1\to E_2,$ there exists a dual isogeny $\hat\alpha:E_2\to E_1$ such that

 $\alpha\circ\hat\alpha=[\deg\alpha]$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem

For every $\alpha:E_1\to E_2,$ there exists a dual isogeny $\hat\alpha:E_2\to E_1$ such that

$$\alpha \circ \hat{\alpha} = [\deg \alpha]$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

•
$$\hat{\hat{\alpha}} = \alpha$$

• $[\hat{n}] = [n]$
• For any α, β we have $\widehat{(\alpha + \beta)} = \hat{\alpha} + \hat{\beta}$

Torsion

Definition (n-torsion Subgroup)

The kernel of the multiplication by $n \text{ map } [n] : E \to E$ is the *n*-torsion subgroup

$$E[n] = \left\{ P \in E(\overline{K}) : [n]P = 0 \right\}$$

(ロ)、(型)、(E)、(E)、 E) の(()

Torsion

Definition (n-torsion Subgroup)

The kernel of the multiplication by $n \text{ map } [n] : E \to E$ is the *n*-torsion subgroup

$$E[n] = \left\{ P \in E(\overline{K}) : [n]P = 0 \right\}$$

Theorem

If char K does not divide n, then

$$E[n] \cong \mathbb{Z}_n \times \mathbb{Z}_n$$

If char $K \mid n$, write $n = p^r n'$ with $p \nmid n'$. Then $E[n] \cong \mathbb{Z}_{n'} \times \mathbb{Z}_{n'}$ or $E[n] \cong \mathbb{Z}_n \times \mathbb{Z}_{n'}$.

Torsion

Definition (n-torsion Subgroup)

The kernel of the multiplication by $n \text{ map } [n] : E \to E$ is the *n*-torsion subgroup

$$E[n] = \left\{ P \in E(\overline{K}) : [n]P = 0 \right\}$$

Theorem

If char K does not divide n, then

$$E[n] \cong \mathbb{Z}_n \times \mathbb{Z}_n$$

If char $K \mid n$, write $n = p^r n'$ with $p \nmid n'$. Then $E[n] \cong \mathbb{Z}_{n'} \times \mathbb{Z}_{n'}$ or $E[n] \cong \mathbb{Z}_n \times \mathbb{Z}_{n'}$. If char K = p and $E[p] \cong 0$, then E is called supersingular.

Endomorphisms

Definition (Endomorphism)

An endomorphism is an isogeny from E to itself.

Definition (Endomorphism Ring)

We define the endomorphism ring End(E) as the set of all endomorphisms on E with

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Addition defined as $(\alpha + \beta)(P) = \alpha(P) + \beta(P)$
- Multiplication defined as $\alpha\beta = \alpha \circ \beta$

Endomorphisms

Remark We see that the map $\mathbb{Z} \to \text{End}(E)$ defined by

 $n\mapsto [n]$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

is a ring morphism.

Frobenius Endomorphism

Let \mathbb{F}_q be a finite field. Then define the Frobenius endomorphism $\pi_q: E(F_q) \to E(F_q)$ as

 $(x,y)\mapsto (x^q,y^q)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Frobenius Endomorphism

Let \mathbb{F}_q be a finite field. Then define the Frobenius endomorphism $\pi_q: E(F_q) \to E(F_q)$ as

 $(x,y)\mapsto (x^q,y^q)$

Lemma Let *E* be defined over \mathbb{F}_q , and let $(x, y) \in E(\overline{\mathbb{F}_q})$. Then $(x, y) \in E(\mathbb{F}_q)$ if and only if $\pi_q(x, y) = (x, y)$.

Frobenius Endomorphism

Let \mathbb{F}_q be a finite field. Then define the Frobenius endomorphism $\pi_q: E(F_q) \to E(F_q)$ as

$$(x,y)\mapsto (x^q,y^q)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Lemma

Let E be defined over \mathbb{F}_q , and let $(x, y) \in E(\overline{\mathbb{F}_q})$. Then $(x, y) \in E(\mathbb{F}_q)$ if and only if $\pi_q(x, y) = (x, y)$.

Proposition

Let n > 1. Then

• Ker
$$(\pi_q^n - 1) = E(\mathbb{F}_{q^n})$$

• $\#E(\mathbb{F}_{q^n}) = \deg(\pi_q^n - 1)$

Hasse's Theorem and Frobenius Polynomial

Theorem (Hasse)

$$|q+1-\# {\it E}({\Bbb F}_q)|\leq 2\sqrt{q}$$

Furthermore, let a $=q+1-\# {\it E}({\Bbb F}_q)$. Then $\pi_q^2-{\it a}\pi_q+q=0$

and a is the unique integer satisfying this polynomial.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Lemma

For any $\alpha \in \text{End}(E)$, we have that $\alpha + \hat{\alpha} = 1 + \deg \alpha - \deg(1 - \alpha)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Trace

Lemma

For any $\alpha \in \mathsf{End}(E)$, we have that $\alpha + \hat{\alpha} = 1 + \deg \alpha - \deg(1 - \alpha)$

Definition (Trace)

The trace of an endomorphism α is the integer tr $\alpha = \alpha + \hat{\alpha}$

Theorem

For all $\alpha \in \text{End}(E)$, both α and $\hat{\alpha}$ are solutions to

$$x^2 - (\operatorname{tr} \alpha)x + \deg \alpha = 0$$

Restricted Endomorphisms

Definition (Restricted Endomorphism)

For any $\alpha \in \text{End}(E)$, its restriction to E[n] is denoted $\alpha_n \in \text{End}(E[n])$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Restricted Endomorphisms

Definition (Restricted Endomorphism)

For any $\alpha \in \text{End}(E)$, its restriction to E[n] is denoted $\alpha_n \in \text{End}(E[n])$.

Recall that $E[n] \cong \mathbb{Z}_n \times \mathbb{Z}_n = \langle P_1, P_2 \rangle$. Then we can view α_n as the matrix

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} P_1 \\ P_2 \end{pmatrix}$$

Restricted Endomorphisms

Definition (Restricted Endomorphism)

For any $\alpha \in \text{End}(E)$, its restriction to E[n] is denoted $\alpha_n \in \text{End}(E[n])$.

Recall that $E[n] \cong \mathbb{Z}_n \times \mathbb{Z}_n = \langle P_1, P_2 \rangle$. Then we can view α_n as the matrix

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} P_1 \\ P_2 \end{pmatrix}$$

Theorem

Let $\alpha \in \text{End}(E)$, and let char $K = p \nmid n$. Then

 $\operatorname{tr} \alpha \equiv \operatorname{tr} \alpha_n \pmod{n}$

 $\deg \alpha \equiv \det \alpha_n \pmod{n}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Theorem

Let $#E(\mathbb{F}_q) = q + 1 - a$. We can then write $x^2 - ax + q = (x - \alpha)(x - \beta)$. Then

$$\# E(\mathbb{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n)$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Theorem Let $\#E(\mathbb{F}_q) = q + 1 - a$. We can then write $x^2 - ax + q = (x - \alpha)(x - \beta)$. Then $\#E(\mathbb{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n)$

Proof.
Let
$$f(x) = (x^n - \alpha^n)(x^n - \beta^n) = x^{2n} - (\alpha^n + \beta^n)x^n + q^n$$
.

Theorem Let $\#E(\mathbb{F}_q) = q + 1 - a$. We can then write $x^2 - ax + q = (x - \alpha)(x - \beta)$. Then $\#E(\mathbb{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n)$

Proof.
Let
$$f(x) = (x^n - \alpha^n)(x^n - \beta^n) = x^{2n} - (\alpha^n + \beta^n)x^n + q^n$$
.
Clearly $x^2 - ax + q$ divides $f(x)$.

Theorem Let $\#E(\mathbb{F}_q) = q + 1 - a$. We can then write $x^2 - ax + q = (x - \alpha)(x - \beta)$. Then $\#E(\mathbb{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n)$

Proof.
Let
$$f(x) = (x^n - \alpha^n)(x^n - \beta^n) = x^{2n} - (\alpha^n + \beta^n)x^n + q^n$$
.
Clearly $x^2 - ax + q$ divides $f(x)$. Therefore, $f(\pi_q) = 0$. We then see that

$$(\pi_q^n)^2 - (\alpha^n + \beta^n)(\pi_q^n) + q^n = 0$$

Theorem Let $\#E(\mathbb{F}_q) = q + 1 - a$. We can then write $x^2 - ax + q = (x - \alpha)(x - \beta)$. Then $\#E(\mathbb{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n)$

Proof.
Let
$$f(x) = (x^n - \alpha^n)(x^n - \beta^n) = x^{2n} - (\alpha^n + \beta^n)x^n + q^n$$
.
Clearly $x^2 - ax + q$ divides $f(x)$. Therefore, $f(\pi_q) = 0$. We then see that

$$(\pi_q^n)^2 - (\alpha^n + \beta^n)(\pi_q^n) + q^n = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Note that $\pi_q^n = \pi_{q^n}$.

Theorem Let $\#E(\mathbb{F}_q) = q + 1 - a$. We can then write $x^2 - ax + q = (x - \alpha)(x - \beta)$. Then $\#E(\mathbb{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n)$

Proof.
Let
$$f(x) = (x^n - \alpha^n)(x^n - \beta^n) = x^{2n} - (\alpha^n + \beta^n)x^n + q^n$$
.
Clearly $x^2 - ax + q$ divides $f(x)$. Therefore, $f(\pi_q) = 0$. We then see that

$$(\pi_q^n)^2 - (\alpha^n + \beta^n)(\pi_q^n) + q^n = 0$$

Note that $\pi_q^n = \pi_{q^n}$. Since the value k such that $\pi_{q^n}^2 - k\pi_{q^n} + q^n = 0$ must be unique, we have

$$\alpha^{n} + \beta^{n} = q^{n} + 1 - \# E(\mathbb{F}_{q^{n}})$$

Supersingular curves behave differently from ordinary curves. They have more "symmetry", or more endomorphisms, and are also very rare.

Theorem

Let $q = p^k$ where p is prime, and let E be an elliptic curve over \mathbb{F}_q . Then E is supersingular $(E[p] \cong 0)$ if and only if tr $\pi_q \equiv 0 \pmod{p}$.

Supersingular curves behave differently from ordinary curves. They have more "symmetry", or more endomorphisms, and are also very rare.

Theorem

Let $q = p^k$ where p is prime, and let E be an elliptic curve over \mathbb{F}_q . Then E is supersingular $(E[p] \cong 0)$ if and only if tr $\pi_q \equiv 0 \pmod{p}$.

Theorem

Let $p \ge 5$ be prime and $E(\mathbb{F}_p)$ supersingular. Then some power of π_p is an integer.

Supersingular curves behave differently from ordinary curves. They have more "symmetry", or more endomorphisms, and are also very rare.

Theorem

Let $q = p^k$ where p is prime, and let E be an elliptic curve over \mathbb{F}_q . Then E is supersingular $(E[p] \cong 0)$ if and only if tr $\pi_q \equiv 0 \pmod{p}$.

Theorem

Let $p \ge 5$ be prime and $E(\mathbb{F}_p)$ supersingular. Then some power of π_p is an integer.

Proof.

We have that tr $\pi_p\equiv 0.$ By Hasse's theorem, we see that tr $\pi_p=0.$ Since

$$\pi_p^2 - a\pi_p + p = 0$$

we see that

$$\pi_p^2 = -p$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Proof.

We have that tr $\pi_p\equiv 0.$ By Hasse's theorem, we see that tr $\pi_p=0.$ Since

$$\pi_p^2 - a\pi_p + p = 0$$

we see that

$$\pi_p^2 = -p$$

Remark

The previous theorem also holds for p = 2, 3, and can be proved case by case for both (Hasse's theorem gives a small list of possibilities for both).

With Elliptic curves over \mathbb{F}_q , we have

- Endomorphisms corresponding to integers (multiplication)
- Endomorphisms from the Frobenius map
- Sometimes, we also get additional symmetries from extension fields – supersingular!

Isogeny Graphs

Definition (*l*-isogeny graph)

Given \mathbb{F}_q and a set *S* of isomorphism classes (*j*-invariants) of elliptic curves defined over \mathbb{F}_q , define the following graph:

- \blacktriangleright The set of vertices is S
- ► There exists an edge between j, j' ∈ S if and only if there exists an ℓ-isogeny between curves with j invariants j, j'.

Endomorphism Rings

Let K = Q(√−D) (an imaginary quadratic field). Then an order O ⊆ K is a subring of K such that it is a finitely generated abelian group.

Endomorphism Rings

Let K = Q(√−D) (an imaginary quadratic field). Then an order O ⊆ K is a subring of K such that it is a finitely generated abelian group.

Theorem

If E is an elliptic curve over \mathbb{F}_q which is ordinary, then $\operatorname{End}(E) \cong \mathcal{O}$ for some order in an imaginary quadratic field. If E is supersingular, then it corresponds to a larger ring (specifically an order in a quaternion algebra).

Ordinary Isogeny Graphs: Volcanoes

Definition (Directed Isogenies)

Let *E*, *E'* be curves with endomorphism rings \mathcal{O} , \mathcal{O}' . Let $\alpha: E \to E'$ be an isogeny of degree ℓ , then

- If $\mathcal{O} = \mathcal{O}'$, α is horizontal
- If $[\mathcal{O}' : \mathcal{O}] = \ell$, α is ascending
- ▶ If $[\mathcal{O} : \mathcal{O}'] = \ell$, α is descending

Ordinary Isogeny Graphs: Volcanoes

Definition (Directed Isogenies)

Let *E*, *E'* be curves with endomorphism rings \mathcal{O} , \mathcal{O}' . Let $\alpha: E \to E'$ be an isogeny of degree ℓ , then

- If $\mathcal{O} = \mathcal{O}'$, α is horizontal
- If $[\mathcal{O}' : \mathcal{O}] = \ell$, α is ascending
- ▶ If $[\mathcal{O} : \mathcal{O}'] = \ell$, α is descending

Ordinary Isogeny Graphs: Volcanoes

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

(Credit: Dustin Moody, NIST)

Supersingular Isogeny Graphs

(Credit: Luca De Feo)