
Elliptic Curves



Elliptic Curves

Definition (Weiestrass form of an Elliptic Curve)
Let K be a field of characteristic > 3. Then an elliptic curve E/K
is a curve defined by a polynomial of the form

Y2 = X3 + aX + b

where a, b ∈ K and 4a3 + 27b2 6= 0, along with a singular “point at
infinity”.

Remark
Formally, an elliptic curve E/K is a projective algebraic variety of
genus 1 with points in P2

K. Here, we have restricted the definition
to nonsingular curves over finite fields.
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Elliptic Curves
Definition
The set of points (x, y) on the curve such that x, y ∈ K is denoted
by E(K).

For any field extension K/K, we have that E(K) forms an abelian
group with the point at infinity as the identity.
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Structure of Elliptic Curves

Let K = Fq where q = pk for some prime p.
Theorem
E(Fq) is either cyclic, or E(Fq) is isomorphic to Zn1 × Zn2 with
n1|n2.



Isomorphisms Between Curves

▶ Over K, two curves y2 = x3 + ax+ b and y2 = x3 + a′x+ b′ are
isomorphic if and only if a′ = u4a and b′ = u6b for some u.

Definition (J-invariant)
We define the j-invariant as

j(E) = 1728 4a3

4a3 + 27b2

▶ The j-invariant determines the isomorphism class of E over K
▶ Two curves not isomorphic over K but isomorphic over K are

said to be twists
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Isomorphisms Between Curves

Example
Let E1 : y2 = x3 − 25x and E2 : y2 = x3 − 4x over Q. These two are
not isomorphic over Q, but over Q(

√
10), we have the isomorphism

(x, y) 7→
Ç

10
4 x, 10

√
10

8 y
å

Note that j(E1) = 1728 and j(E2) = 1728. Curves with j-invariant
0 or 1728 are special: they have extra automorphisms.
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Isogenies

Definition (Isogeny)
An isogeny from E1 to E2 is a homomorphism between the two
curves

ϕ : E1(K) → E2(K)

given by rational functions

(x, y) 7→ (R1(x, y),R2(x, y))

▶ Every isogeny also induces a surjective group morphism from
E1(K) → E2(K).

▶ If there exists a nonzero isogeny E1 → E2, we say E1 and E2
are isogenous.

▶ Note that we can rewrite the map as (r1(x), y · r2(x))
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Isogenies

Definition (Degree)
The degree of an isogeny is defined as the degree of the rational
map r1(x), or

max {deg p(x), deg q(x)}

where r1 = p/q.

Definition (Separable)
If the derivative r′1(x) 6= 0, then we say the isogeny is separable.
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Isogenies

Example
The multiplication by n map [n] : E → E defined by

P 7→ nP = P + P + · · ·+ P

is an isogeny from E to itself.

Example
Let E : y2 = x3 − x and E′ : y2 + x3 + 4x. Then E and E′ are
isogenous by the map

(x, y) 7→ (y2/x2, y(1 − x2)/x2)
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Isogenies

Theorem
Let α be a separable isogeny. Then

degα = #Ker(α)

Theorem
Given a finite subgroup G ⊆ E1(Fq) there exists a unique separable
isogeny α : E1 → E2 with kernel G. Moreover, it is efficient to
compute such isogeny.
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Isogenies

Theorem
For every α : E1 → E2, there exists a dual isogeny α̂ : E2 → E1
such that

α ◦ α̂ = [degα]

▶ ˆ̂α = α

▶ ˆ[n] = [n]
▶ For any α, β we have ◊�(α+ β) = α̂+ β̂
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Torsion

Definition (n-torsion Subgroup)
The kernel of the multiplication by n map [n] : E → E is the
n-torsion subgroup

E[n] =
{

P ∈ E(K) : [n]P = 0
}

Theorem
If charK does not divide n, then

E[n] ∼= Zn × Zn

If charK | n, write n = prn′ with p ∤ n′. Then E[n] ∼= Zn′ × Zn′ or
E[n] ∼= Zn × Zn′ .
If charK = p and E[p] ∼= 0, then E is called supersingular.



Torsion

Definition (n-torsion Subgroup)
The kernel of the multiplication by n map [n] : E → E is the
n-torsion subgroup

E[n] =
{

P ∈ E(K) : [n]P = 0
}

Theorem
If charK does not divide n, then

E[n] ∼= Zn × Zn

If charK | n, write n = prn′ with p ∤ n′. Then E[n] ∼= Zn′ × Zn′ or
E[n] ∼= Zn × Zn′ .

If charK = p and E[p] ∼= 0, then E is called supersingular.



Torsion

Definition (n-torsion Subgroup)
The kernel of the multiplication by n map [n] : E → E is the
n-torsion subgroup

E[n] =
{

P ∈ E(K) : [n]P = 0
}

Theorem
If charK does not divide n, then

E[n] ∼= Zn × Zn

If charK | n, write n = prn′ with p ∤ n′. Then E[n] ∼= Zn′ × Zn′ or
E[n] ∼= Zn × Zn′ .
If charK = p and E[p] ∼= 0, then E is called supersingular.



Endomorphisms

Definition (Endomorphism)
An endomorphism is an isogeny from E to itself.

Definition (Endomorphism Ring)
We define the endomorphism ring End(E) as the set of all
endomorphisms on E with
▶ Addition defined as (α+ β)(P) = α(P) + β(P)
▶ Multiplication defined as αβ = α ◦ β



Endomorphisms

Remark
We see that the map Z → End(E) defined by

n 7→ [n]

is a ring morphism.



Frobenius Endomorphism

Let Fq be a finite field. Then define the Frobenius endomorphism
πq : E(Fq) → E(Fq) as

(x, y) 7→ (xq, yq)

Lemma
Let E be defined over Fq, and let (x, y) ∈ E(Fq). Then
(x, y) ∈ E(Fq) if and only if πq(x, y) = (x, y).

Proposition
Let n > 1. Then
▶ Ker

(
πn

q − 1
)
= E(Fqn)

▶ #E(Fqn) = deg(πn
q − 1)
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Hasse’s Theorem and Frobenius Polynomial

Theorem (Hasse)

|q + 1 −#E(Fq)| ≤ 2√q

Furthermore, let a = q + 1 −#E(Fq). Then

π2
q − aπq + q = 0

and a is the unique integer satisfying this polynomial.



Trace

Lemma
For any α ∈ End(E), we have that α+ α̂ = 1+degα− deg(1− α)

Definition (Trace)
The trace of an endomorphism α is the integer trα = α+ α̂

Theorem
For all α ∈ End(E), both α and α̂ are solutions to

x2 − (trα)x + degα = 0
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Restricted Endomorphisms

Definition (Restricted Endomorphism)
For any α ∈ End(E), its restriction to E[n] is denoted
αn ∈ End(E[n]).

Recall that E[n] ∼= Zn × Zn = 〈P1,P2〉. Then we can view αn as
the matrix Å

a b
c d

ãÅ
P1
P2

ã
Theorem
Let α ∈ End(E), and let charK = p ∤ n. Then

trα ≡ trαn (mod n)

degα ≡ detαn (mod n)
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Point Counting
Theorem
Let #E(Fq) = q + 1 − a. We can then write
x2 − ax + q = (x − α)(x − β). Then

#E(Fqn) = qn + 1 − (αn + βn)

Proof.
Let f(x) = (xn − αn)(xn − βn) = x2n − (αn + βn)xn + qn.
Clearly x2 − ax + q divides f(x).Therefore, f(πq) = 0. We then see
that

(πn
q)

2 − (αn + βn)(πn
q) + qn = 0

Note that πn
q = πqn .Since the value k such that

π2
qn − kπqn + qn = 0 must be unique, we have

αn + βn = qn + 1 −#E(Fqn)
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Supersingularity

Supersingular curves behave differently from ordinary curves. They
have more “symmetry”, or more endomorphisms, and are also very
rare.
Theorem
Let q = pk where p is prime, and let E be an elliptic curve over Fq.
Then E is supersingular (E[p] ∼= 0) if and only if tr πq ≡ 0 (mod p).

Theorem
Let p ≥ 5 be prime and E(Fp) supersingular. Then some power of
πp is an integer.
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Supersingularity

Proof.
We have that tr πp ≡ 0. By Hasse’s theorem, we see that
tr πp = 0. Since

π2
p − aπp + p = 0

we see that
π2

p = −p

Remark
The previous theorem also holds for p = 2, 3, and can be proved
case by case for both (Hasse’s theorem gives a small list of
possibilities for both).
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Supersingularity

With Elliptic curves over Fq, we have
▶ Endomorphisms corresponding to integers (multiplication)
▶ Endomorphisms from the Frobenius map
▶ Sometimes, we also get additional symmetries from extension

fields – supersingular!



Isogeny Graphs

Definition (ℓ-isogeny graph)
Given Fq and a set S of isomorphism classes (j-invariants) of
elliptic curves defined over Fq, define the following graph:
▶ The set of vertices is S
▶ There exists an edge between j, j′ ∈ S if and only if there

exists an ℓ-isogeny between curves with j invariants j, j′.



Endomorphism Rings

▶ Let K = Q(
√
−D) (an imaginary quadratic field). Then an

order O ⊆ K is a subring of K such that it is a finitely
generated abelian group.

Theorem
If E is an elliptic curve over Fq which is ordinary, then End(E) ∼= O
for some order in an imaginary quadratic field. If E is
supersingular, then it corresponds to a larger ring (specifically an
order in a quaternion algebra).



Endomorphism Rings

▶ Let K = Q(
√
−D) (an imaginary quadratic field). Then an

order O ⊆ K is a subring of K such that it is a finitely
generated abelian group.

Theorem
If E is an elliptic curve over Fq which is ordinary, then End(E) ∼= O
for some order in an imaginary quadratic field. If E is
supersingular, then it corresponds to a larger ring (specifically an
order in a quaternion algebra).



Ordinary Isogeny Graphs: Volcanoes

Definition (Directed Isogenies)
Let E, E′ be curves with endomorphism rings O, O′. Let
α : E → E′ be an isogeny of degree ℓ, then
▶ If O = O′, α is horizontal
▶ If [O′ : O] = ℓ, α is ascending
▶ If [O : O′] = ℓ, α is descending
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Ordinary Isogeny Graphs: Volcanoes

(Credit: Dustin Moody, NIST)



Supersingular Isogeny Graphs

(Credit: Luca De Feo)


