Improved side channel attacks and security estimation on Kyber

Russell Chiu¹ Dana Dachman-Soled¹ Santosh Ghosh² Hari Kailad¹ Hunter Kippen¹ Rishub Nagpal³ Avery Parker¹ Robert Primas²

¹University of Maryland

²Intel Labs, Hillsboro, USA

³Graz University of Technology, Austria

Introduction

CRYSTALS Kyber is one of the first "quantum-resistant" key encapsulation mechanisms (KEM) originally submitted to the NIST competition, now standardized by NIST as ML-KEM [4]. Therefore, understanding the side channel security of Kyber is critical.

In prior work, a framework was introduced to estimate the security of **LWE** with Hints [1]. In this framework, the **LWE** problem is first reduced to **DBDD**, an intermediate problem between **LWE** and **uSVP**. The **DBDD** problem could then be reduced further by integrating side information, or hints. With a further reduction to **uSVP**, one can then estimate the BKZ blocksize to solve the uSVP instance.

Hint Integration

- Let $\mathbf{x} = (\mathbf{s}_E \mid \mid (\hat{\mathbf{s}} \circ \hat{\mathbf{u}})).$
- Perfect Hints.

$\langle \mathbf{x}, \mathbf{v} \rangle = \gamma$

Exact guesses on NTT coordinates can be modeled as perfect hints where ${\bf v}$ is a unit basis vector.

Approximate Hints.

 $\langle \mathbf{x}, \mathbf{v} \rangle \approx \gamma$

Prior attacks [3] have focused on obtaining side channel information from the inverse NTT applied during decryption. In this work, we introduce a new model, which allows us to embed the Kyber **LWE** problem as a **DBDD** instance. This allows us to estimate security with side channel information on the NTT and perform attacks.

Embedding the Kyber LWE Instance

Consider a single Kyber LWE equation $\mathbf{a} \cdot \mathbf{s} + \mathbf{e} = \mathbf{b}$ over \mathcal{R}_q . In the NTT domain, this can be written as

 $\hat{\mathbf{a}} \circ \hat{\mathbf{s}} + \hat{\mathbf{e}} = \hat{\mathbf{b}}$

Structure of the Kyber NTT: Allows us to split $\hat{\mathbf{s}}$ into the even and odd coordinates, $\hat{\mathbf{s}}_E$ and $\hat{\mathbf{s}}_O$.

 $\hat{\mathbf{s}}_E = \mathbf{s}_E \mathbf{V}_{half}$ $\hat{\mathbf{s}}_O = \mathbf{s}_O \mathbf{V}_{half}$

Let \hat{u} be a ciphertext in the NTT space. Then the product is equal to $\hat{s}\circ\hat{u}=\hat{s}U$

Here, for each product $(\hat{s}_{2i}X + \hat{s}_{2i+1})(\hat{u}_{2i}X + \hat{u}_{2i+1})$, we let

- Noisy side channel information on an NTT coordinate can be modeled as an approximate hint.
- Short Vector Hints. Knowledge of \mathbf{v} such that $\mathbf{v} \in \Lambda$ from the DBDD instance is short.

Pathological Short Vectors.

If only the first 64 coordinates are nonzero, note that the NTT of

$$\Phi_{32}(n) = \prod_{i=0}^{32} x - \zeta^{2 \cdot \operatorname{br}(i) + 1}$$

is zero.

Integrating these pathological NTT structure based short vectors into the instance and projecting on them improves BKZ estimates. Reduces predicted BKZ blocksize by around 40.

Preliminary Results

Experimental data on 64 nonzero NTT coordinates with n guesses (the number of perfect coordinate hints).

$$\mathbf{U}_{i} = \begin{pmatrix} \hat{u}_{2i} & \hat{u}_{2i+1} \cdot \zeta^{2 \cdot \operatorname{Dr}(i)+1} \\ \hat{u}_{2i+1} & \hat{u}_{2i} \end{pmatrix}$$
$$\mathbf{U} = \begin{pmatrix} \mathbf{U}_{1} & \\ & \ddots & \\ & & \mathbf{U}_{128} \end{pmatrix}$$

Then we obtain the following (two) equations for the even and odd respectively (even coordinates only displayed here):

$$\mathbf{s}_E \mathbf{V}_{half} \mathbf{\Pi}_{\mathbf{U}_E} - (\hat{\mathbf{s}} \circ \hat{\mathbf{u}}) (\mathbf{U}^{\sim})_E = \mathbf{0}$$

We can then transform this to a nonstandard LWE instance by converting to a block matrix.

$$(\mathbf{s}_E \mid\mid (\mathbf{\hat{s}} \circ \mathbf{\hat{u}})) \begin{bmatrix} \mathbf{V}_{half} \mathbf{\Pi}_{\mathbf{U}_E} \\ -(\mathbf{U}^{\sim})_E \end{bmatrix}$$

By row reducing and factoring out the projection, we get the following. $(\mathbf{s}_E \mathbf{A}_E + (\hat{\mathbf{s}} \circ \hat{\mathbf{u}})) \mathbf{\Pi}_{\mathbf{U}_E} = \mathbf{0}$

Note this looks like an LWE instance – however, we do not have the guarantee of a unique short vector anymore, as the coordinates of the error are no longer very short!

References

[1] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. LWE with side information: Attacks

Figure 1. BKZ prediction with and without SV Hints at different guess values

- and concrete security estimation. Cryptology ePrint Archive, Paper 2020/292, 2020. https://eprint.iacr.org/2020/292.
- [2] Dana Dachman-Soled, Huijing Gong, Mukul Kulkarni, and Aria Shahverdi. (in)security of ring-lwe under partial key exposure. *Journal of Mathematical Cryptology*, 15(1):72–86, 2021.
- [3] Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska, Thomas Schamberger, Silvan Streit, Emanuele Strieder, and Christine van Vredendaal. Chosen ciphertext k-trace attacks on masked CCA2 secure kyber. Cryptology ePrint Archive, Paper 2021/956, 2021. https://eprint.iacr.org/2021/956.
- [4] National Institute of Standards and Technology. Module-lattice-based key-encapsulation mechanism standard. Federal Information Processing Standards Publication (FIPS) NIST FIPS, 2023. https://doi.org/10.6028/NIST.FIPS.203.ipd.

Acknowledgements

★ Supported in part by NSF grant #CNS-2154705 and by Intel through the Intel Labs Crypto Frontiers Research Center.

Figure 2. BKZ Success / Failure with number of guesses

Future Work

Test with different locations for nonzero values.

BKZ is effectively able to emulate the algebraic attack from [2]. First 32 NTT coefficients correspond to every fourth coefficient (bit reversed order). Groups of 4 independent short vector hints span the 4 nonzero coordinates – projecting on these short vectors will set them to zero, effectively recovering the shortest solutions to the 1 × 4 linear system given in [2].

https://cyber.umd.edu

Math PQC Conference, Budapest

harikeshkailad@gmail.com