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Cryptanalysis

• Breaking systems

• Partial secret leakage
• Poor implementation
• Happens a LOT in the real world!
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What is a Lattice?

• a0x + a1y

• Integer Linear combination of vectors
• Multiple dimensions:

• x = [x0, x1, x2, . . .]
• a0x0 + a1x1 + . . .
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What is a Lattice?

a
x0
x1
x2...

×

a0x0 + a1x1 + a2x3 . . .

aX
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Shortest Vector
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Shortest Vector

Definition (Shortest Vector Problem)
Given our X, can we find the shortest nonzero point in our lattice?

• This problem is hard for computers in high dimensions
• Can we approximate it?
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LLL

• Yes we can!

• We can find a new set of vectors X′ which are “somewhat
short”

• This is known as the Lenstra-Lenstra-Lovasz algorithm
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LLL

• Intuition: solve linear equations which are “somewhat short”

• Say we have an equation ax + by = c where x and y are small.1 0 a
0 1 b
0 0 −c


Note [x, y, 0] is an integer linear combination
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Usages

• Integer Linear programming
• Finding rational approximations to real numbers
• Factorizing rational polynomials
• Solving a modular polynomial for small roots
• Finding minecraft seeds :) (great video on this!)
• Breaking Cryptosystems
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Case Study 1: Knapsack
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Public Key Encryption

• Gen → (pk, sk)
• Encpk(m) → c
• Decsk(c) → m
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Public Key Encryption

Alice Encpk Bob’s public key

Bob Decsk Bob’s private key

m

c

m
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Public Key Encryption

• Merkle and Hellman proposed a public key system based on
“knapsacks”

• Broken by lattices! (with some conditions)
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Knapsack Problem

Definition (Knapsack Problem)
Given a set of integers a1, a2, . . . an, and a target value s, find a
subset of those integers that add up to s. Or equivalently, find
e1, e2, . . . en where ei ∈ {0, 1} such that

n∑
i=1

aiei = s
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Knapsack Problem

Say we have 5, 7, 21, 8, 9, 10, where the sum has to be equal to 13.

Solution: 5 + 8 = 13
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Superincreasing Sequences

Definition (Superincreasing Sequence)
We say a set of integers a1, a2, . . . an is superincreasing if

ai >
i−1∑
j=1

aj

• The next number is greater than the sum of the first n
numbers

25



Superincreasing Sequences

Definition (Superincreasing Sequence)
We say a set of integers a1, a2, . . . an is superincreasing if

ai >
i−1∑
j=1

aj

• The next number is greater than the sum of the first n
numbers

25



Superincreasing Sequences

Definition (Superincreasing Sequence)
We say a set of integers a1, a2, . . . an is superincreasing if

ai >
i−1∑
j=1

aj

• The next number is greater than the sum of the first n
numbers

25



Superincreasing Sequences

Say we have 1, 5, 8, 20, 35, 80, where the sum has to be equal to 26.

• Find the largest value less than 26: 20.
• Subtract it: 26 − 20 = 6.
• Repeat with 6: 6 − 5 = 1
• We get 1, 5, 20
• Easy to solve Knapsack if superincreasing
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Merkle Hellman

• Generate superincreasing sequence W = (w1,w2, . . .wn)

• Choose a prime q greater than the sum of W
• Choose r and s such that r · s = 1 mod q
• Calculate new sequence B = (bi = r · wi mod q)
• Public: B
• Private: W, r, s, q

27
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Merkle Hellman

• Encryption of message:

• Convert message into bits m = m1m2m3 . . .

• Calculate ciphertext as the knapsack sum of B and m:

c =
n∑

i=1
bi · mi
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Merkle Hellman
• Decryption of ciphertext:

• Remember that c is

c =
n∑

i=1
bi · mi =

n∑
i=1

rwi · mi

• Calculate c′ = sc mod q

c′ = s
n∑

i=1
rwi · mi = sr

n∑
i=1

wi · mi =
n∑

i=1
wi · mi

• Now we can solve, because we know the superincreasing
sequence W.

• Note: If we can solve the knapsack problem, we don’t need
the private key!
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Knapsack Problem

Definition (Knapsack Problem)
Given a set of integers a1, a2, . . . an, and a target value s, find a
subset of those integers that add up to s. Or equivalently, find
e1, e2, . . . en where ei ∈ {0, 1} such that

n∑
i=1

aiei = s

Hmm looks like a short linear combination to me
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Solving Knapsack∗


1 0 0 0 b1
0 1 0 0 b2
0 0 1 0 b3
0 0 0 1 b4
0 0 0 0 −c


Short vector of all 0 and 1 : [m1,m2,m3,m4, 0]
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Demo

Demo!
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Case Study 2: Secret Sharing
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Secret Sharing

Definition ((t, n) secret sharing scheme)
A (t, n) secret sharing scheme for secret s is defined to be

• If any t people get together, they can learn the secret
• If any t − 1 get together, they learn nothing

• Split the secret into smaller “shares” for individual people
• Useful for storing secrets (for example blockchain wallets)
• Password managers, company key sharing
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Polynomials

−4 −2 2 4

−5

5

• x2: degree 2

• Degree t polynomial uniquely defined by t + 1 points
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Shamir’s Secret Sharing

• Let f(x) = at−1xt−1 + at−2xt−2 . . .+ a2x2 + a1x + s mod q

• Give n people each a point (xi, f(xi))

• Any t people can reconstruct the polynomial and find s
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Poor implementation

• what happens if we forget the mod q?

• Say we have n = 5, t = 3
• We only have two shares (x1, f(x1)), (x2, f(x2))

• Recall f(x) = ax2 + bx + s
• Two linear equations: ax2

i + bxi + s
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Poor implementation


1 0 0 kx2

1 kx2
2

0 1 0 kx1 kx2
0 0 1 k k
0 0 0 −kf(x1) −kf(x2)


• If k is very large: short vector [a, b, s, 0, 0]

• The more shares you have, the more likely to be correct
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Demo

Demo!
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More Fun Things

• Partial RSA information
• Factorize a number n = pq given the “top part” of p

• Used to find minecraft seeds
• Java random uses a linear random number generator
• Solve for specific situations: 12 eyes, etc
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Final Thoughts

• What lattices are
• Attacked a public key cryptosystem
• Attacked a poor implementation
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