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Public Key Encryption

® Gen — (pk, sk)
® Encpu(m) — ¢
® Decg(c) = m



Public Key Encryption

Alice —"— Encpx +—— Bob's public key

|¢

Bob <—— Decg +—— Bob's private key
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® Relies on the problem of factoring two large numbers



Public Key Encryption

® Most commonly used today is RSA

® Relies on the problem of factoring two large numbers

® Can be factored in polynomial time by quantum computers:
Shor's algorithm



Public Key Encryption

C & googlecom

Store Certificate Viewer: *.google.com

General | Details
Certificate Hierarchy
Default Trust:GTS Root R1
GTsCAI3
*.google.com
Certificate Fields
Certificate Policies -
CRL Distribution Points.
Signed Certificate Timestamp List
Certificate Signature Algorithm
Certificate Signature Value
SHA-256 Fingarprints
Certificate
PublicKey
Field Value

PKCS #1 SHA-256 With RSA Encryption

Exort... |



Lattices



What is a Lattice?

A discrete additive subgroup of R”
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Shortest Vector

Definition (Minimum Distance)

The minimum distance of a lattice £ is the length of the shortest
nonzero lattice vector:

M(L) = mi
1(£) Ve")}'\'}c)}H"”

*(more generally: \j(L) is the smallest r such that £ has i linearly
independent vectors of norm at most r )
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Shortest Vector
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Shortest Vector

Definition (Shortest Vector Problem (SVP))

Given an arbitrary basis B of some lattice L = £(B), find a
shortest nonzero lattice vector v € L for which ||v|| = A1 (£).
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Shortest Vector

Definition (Shortest Vector Problem (SVP))

Given an arbitrary basis B of some lattice L = £(B), find a
shortest nonzero lattice vector v € L for which ||v|| = A1 (£).

® Known to be NP hard

® No known polynomial time quantum algorithm

14



Relaxations of SVP

Definition (Approximate SVP (SVP,))

Given a basis B of an n-dimensional lattice £ = £(B), find a
nonzero vector v € L for which [[v|| < v(n) - A\1(L).
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Relaxations of SVP

Definition (Approximate SVP (SVP,))

Given a basis B of an n-dimensional lattice £ = £(B), find a
nonzero vector v € L for which [[v|| < v(n) - A\1(L).

® ‘“kinda close”
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Relaxations of SVP

Definition (Approximate SVP (SVP,))

Given a basis B of an n-dimensional lattice £ = £(B), find a
nonzero vector v € L for which [[v|| < v(n) - A\1(L).

® “kinda close”
® ~ =1 is standard SVP
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Relaxations of SVP

Definition (Decisional Approximate SVP (GapSVP.,))

Given a basis B of an n-dimensional lattice £ = £(B), where either
A (L) <1 or Ai(L) > v(n), determine which is the case.
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Relaxations of SVP

Definition (Decisional Approximate SVP (GapSVP.,))

Given a basis B of an n-dimensional lattice £ = £(B), where either
A (L) <1 or Ai(L) > v(n), determine which is the case.

® |s the shortest vector “small” or “big"
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Relaxations of SVP

Definition (Approximate Shortest Independent Vectors
(SIVP,))

Given a basis B of a full rank n-dimensional lattice £ = L(B),
output a set S= {s;} C L of n linearly independent lattice vectors
where ||sil| < ~v(n) - Ap(L) for all i.

17



Relaxations of SVP

Definition (Approximate Shortest Independent Vectors
(SIVP,))

Given a basis B of a full rank n-dimensional lattice £ = L(B),
output a set S= {s;} C L of n linearly independent lattice vectors
where ||sil| < ~v(n) - Ap(L) for all i.

® Give me a basis of short vectors
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Bounded Distance Decoding
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Bounded Distance Decoding

Definition (Bounded Distance Decoding (BDD,,))

Given a basis B of an n-dimensional lattice £ = £(B) and a target
point t € R" with the guarantee that

dist(t, £) < d = A1(L)/(2v(n))

find the unique lattice vector v € £ such that ||t — v|| < d.
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Bounded Distance Decoding

Definition (Bounded Distance Decoding (BDD,,))

Given a basis B of an n-dimensional lattice £ = £(B) and a target
point t € R" with the guarantee that

dist(t, £) < d = A1(L)/(2v(n))

find the unique lattice vector v € £ such that ||t — v|| < d.

® “Find the close point”

® Equivalent to another SVP relaxation with dimension n+ 1
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Bounded Distance Decoding

Bt
0 M

20



Some Fun Lattice Things
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Some Fun Lattice Things

Definition (Fundamental Parallelepiped)

P(B) ={Bx: xe R"Vi,0 < x; <1}
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Definition (Fundamental Parallelepiped)
P(B) ={Bx: xe R"Vi,0 < x; <1}
Definition (Volume of a Lattice £)

vol(L) = y/det (B"B)
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Some Fun Lattice Things

Definition (Fundamental Parallelepiped)
P(B) ={Bx: xe R"Vi,0 < x; <1}

Definition (Volume of a Lattice £)

vol(L) = y/det (B"B)

When the Lattice is full rank, we have vol(£) = | det B|
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Some Fun Lattice Things

Theorem

Let L be a lattice of rank n. Let by, bo, ..
independent lattice vectors. Then by, by, .

and only if’P(bl, b,, ... bn) NL= {0}

.b, € L be n linearly
.. b, form a basis of L if
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Some Fun Lattice Things

Theorem

Two basis By, By span the same lattice if and only if there exists
an integer unimodular matrix U (|det U| = 1) such that

B, = B, U.
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Some Fun Lattice Things

Theorem (Blichfeld's Theorem)

Let L be a lattice, and let S C R" be a set with vol(S) > vol(L).
Then there exists two nonequal points z1,zp € S such that
zn—2 € L.
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Some Fun Lattice Things

Theorem (Minkowski's Bound)
Let £ be a lattice. Then there is an x € L\ {0} with

x|l < v/nlvol(£) [/
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Applications

Sphere Packing

Crystallography

Coding Theory and Error Correction

Lattice based Cryptosystems
Lattice based Cryptanalysis: CSECOQUMD (Wednesday!)

27



Cryptosystems



Short Integer Solutions

Definition (Short Integer Solutions (SIS, 44.m))

Given a uniformly random matrix A € Zg", find nonzero integer
vector z € Z™ of norm ||z|| < 8 < q such that

Az:OEZZ
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Short Integer Solutions

Definition (Short Integer Solutions (SIS, 44.m))

Given a uniformly random matrix A € Zg", find nonzero integer
vector z € Z™ of norm ||z|| < 8 < q such that

Az:OEZZ

® Find a “short” linear combination of column vectors to get 0.

® Note 5 < g as the vector (q,0,0,...) satisfies the solution.
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Short Integer Solutions

Definition (Short Integer Solutions (SIS, 44.m))

Given a uniformly random matrix A € Zg", find nonzero integer
vector z € Z™ of norm ||z|| < 8 < q such that

Az:OEZZ

® Find a “short” linear combination of column vectors to get 0.

® Note 5 < g as the vector (q,0,0,...) satisfies the solution.
® Non homogeneous SIS: Az = k
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Short Integer Solutions

Theorem

For any m = poly(n), >0, g > /3 - poly(n), solving SIS, g g m is
at least as hard as solving GapSVP., and SIVP., for some

v = f - poly(n).
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Theorem
For any m = poly(n), >0, g > /3 - poly(n), solving SIS, g g m is
at least as hard as solving GapSVP., and SIVP., for some
~v = - poly(n).
® SIS is as hard as approximate SVP
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Short Integer Solutions

Theorem
For any m = poly(n), >0, g > /3 - poly(n), solving SIS, g g m is
at least as hard as solving GapSVP., and SIVP., for some
~v = - poly(n).
® SIS is as hard as approximate SVP

® |Intuition behind proof: We have an oracle that solves SIS,
can we then solve approximate SVP?
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Short Integer Solutions

® High level idea: we take a set of lattice vectors S C £, and
reduce it to a new set ||S'|| < [|S]|/2 (where ||S]| = max||Si||)
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® |terate until vectors satisfy the SIVP condition, so we have
solved SIVP using SIS

31



Short Integer Solutions

® The core reduction step is to take a set of random “somewhat
short” feasible vectors V, and provide S~V mod g to the
oracle
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Short Integer Solutions

® The core reduction step is to take a set of random “somewhat
short” feasible vectors V, and provide S~V mod g to the
oracle

¢ |f the oracle outputs vector z, add Vz/q to the new set.
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Short Integer Solutions

® The core reduction step is to take a set of random “somewhat
short” feasible vectors V, and provide S~V mod g to the
oracle

¢ |f the oracle outputs vector z, add Vz/q to the new set.

® The devil is in the details:

® Prove ve L and ||v]| < ||S]]/2
® A must be “close enough” to a uniform matrix
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Quick Aside: Relaxing SIS

® Whole Zoo of S/S-like assumptions: useful for different
cryptography constructions

B
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Quick Aside: Relaxing SIS

® Whole Zoo of S/S-like assumptions: useful for different
cryptography constructions

® Provide some “hint” information with the base A matrix

® Some add structure: for example, module SIS replaces
elements in the matrix with structured ring elements

® Some don’t have reductions: open problems
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Learning with Error

Definition (Learning With Error (LWE, 4.m))

Given uniform random matrix A € ZZX’” and
b=As+e modgq

where s is sampled from a short distribution x” and e is sampled
from a short distribution x™,
Find the vector s.
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Given uniform random matrix A € ZZX’” and
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from a short distribution x™,
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® Has a quantum reduction to GapSVP and SIVP (idk how it
works some QFFT magic)
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Learning with Error

Definition (Learning With Error (LWE, 4.m))

Given uniform random matrix A € ZZX’” and
b=As+e modgq

where s is sampled from a short distribution x” and e is sampled
from a short distribution x™,
Find the vector s.

® Has a quantum reduction to GapSVP and SIVP (idk how it
works some QFFT magic)
® Also has more structured variants: Ring-LWE and friends
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Public Key Encryption

o Generate b' =s"TA+ e’ mod g
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Public Key Encryption

o Generate b' =s"TA+ e’ mod g
e Public: (A, b)
® Private: (s, e’)
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Public Key Encryption

® Encryption of bit p:
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Public Key Encryption

® Encryption of bit p:

® Choose random small x < x"
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Public Key Encryption

Encryption of bit p:

Choose random small x < x
® ¢y = Ax
c = bTX-i-,U' ng
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Public Key Encryption

e Decryption with secret key s':
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Public Key Encryption

e Decryption with secret key s':

® C — STC()
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Public Key Encryption

e Decryption with secret key s':

® C — STC()

® b'x+p- || —sTAx
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Public Key Encryption

® Decryption with secret key s':
® C — STC()
® b'x+p- || —sTAx

NlQ Nla

o eTx+u-[

J

T
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Public Key Encryption

® Decryption with secret key s':
® C — STC()

® b'x+p- || —sTAx

© elx+pu- g

® e and x are small

T
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Fun Lattice Things Part 2

® Ring-LWE and Ring-SIS: Elements of the matrices chosen
from cyclotomic rings
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Fun Lattice Things Part 2

® Ring-LWE and Ring-SIS: Elements of the matrices chosen
from cyclotomic rings

® Notion of “short” vector is different: based on the canonical
embedding

® More “structured”: security proofs are more subtle

® Security reductions are based on short vector problems in ideal
lattices (not arbitrary lattices)
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Fin

® Discussed Lattices
® | attice based hardness assumptions

® Built cryptography from lattices!
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