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Public Key Encryption

• Gen→ (pk, sk)
• Encpk(m)→ c
• Decsk(c)→ m
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Public Key Encryption

Alice Encpk Bob’s public key

Bob Decsk Bob’s private key

m

c

m
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Public Key Encryption

• Most commonly used today is RSA
• Relies on the problem of factoring two large numbers

• Can be factored in polynomial time by quantum computers:
Shor’s algorithm
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Public Key Encryption
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Lattices
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What is a Lattice?
A discrete additive subgroup of Rn
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What is a Lattice?
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What is a Lattice?

L = L(B) =

{ k∑
i=1

zibi : zi ∈ Z

}
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What is a Lattice?
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Shortest Vector

Definition (Minimum Distance)
The minimum distance of a lattice L is the length of the shortest
nonzero lattice vector:

λ1(L) = min
v∈L\{0}

∥v ∥

*(more generally: λi(L) is the smallest r such that L has i linearly
independent vectors of norm at most r )
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Shortest Vector

L(B)→ λ1(L)?
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Shortest Vector

Definition (Shortest Vector Problem (SVP))
Given an arbitrary basis B of some lattice L = L(B), find a
shortest nonzero lattice vector v ∈ L for which ∥v∥ = λ1(L).

• Known to be NP hard
• No known polynomial time quantum algorithm
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Relaxations of SVP

Definition (Approximate SVP (SVPγ))
Given a basis B of an n-dimensional lattice L = L(B), find a
nonzero vector v ∈ L for which ∥v∥ ≤ γ(n) · λ1(L).

• “kinda close”
• γ = 1 is standard SVP
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Relaxations of SVP

Definition (Decisional Approximate SVP (GapSVPγ))
Given a basis B of an n-dimensional lattice L = L(B), where either
λ1(L) ≤ 1 or λ1(L) > γ(n), determine which is the case.

• Is the shortest vector “small” or “big”
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Relaxations of SVP

Definition (Approximate Shortest Independent Vectors
(SIVPγ))
Given a basis B of a full rank n-dimensional lattice L = L(B),
output a set S = {si} ⊂ L of n linearly independent lattice vectors
where ∥si∥ ≤ γ(n) · λn(L) for all i.

• Give me a basis of short vectors
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Bounded Distance Decoding
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Bounded Distance Decoding

Definition (Bounded Distance Decoding (BDDγ))
Given a basis B of an n-dimensional lattice L = L(B) and a target
point t ∈ Rn with the guarantee that

dist(t,L) < d = λ1(L)/(2γ(n))

find the unique lattice vector v ∈ L such that ∥t− v∥ < d.

• “Find the close point”
• Equivalent to another SVP relaxation with dimension n + 1
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Bounded Distance Decoding

[
B t
0 M

]
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Some Fun Lattice Things
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Some Fun Lattice Things

Definition (Fundamental Parallelepiped)

P(B) = {Bx : x ∈ Rn, ∀i, 0 ≤ xi ≤ 1}

Definition (Volume of a Lattice L)

vol(L) =
√
det

(
BTB

)
When the Lattice is full rank, we have vol(L) = | detB |
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Some Fun Lattice Things

Theorem
Let L be a lattice of rank n. Let b1,b2, . . . bn ∈ L be n linearly
independent lattice vectors. Then b1,b2, . . . bn form a basis of L if
and only if P(b1,b2, . . . bn) ∩ L = {0}.
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Some Fun Lattice Things

Theorem
Two basis B1, B2 span the same lattice if and only if there exists
an integer unimodular matrix U (| detU | = 1) such that
B2 = B1U.
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Some Fun Lattice Things

Theorem (Blichfeld’s Theorem)
Let L be a lattice, and let S ⊆ Rn be a set with vol(S) > vol(L).
Then there exists two nonequal points z1, z2 ∈ S such that
z1 − z2 ∈ L.
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Some Fun Lattice Things

Theorem (Minkowski’s Bound)
Let L be a lattice. Then there is an x ∈ L \ {0} with

∥x∥ ≤
√

n |vol(L) |1/n
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Applications

• Sphere Packing
• Crystallography
• Coding Theory and Error Correction
• Lattice based Cryptosystems
• Lattice based Cryptanalysis: CSEC@UMD (Wednesday!)
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Cryptosystems
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Short Integer Solutions

Definition (Short Integer Solutions (SISn,q,β,m))
Given a uniformly random matrix A ∈ Znxm

q , find nonzero integer
vector z ∈ Zm of norm ∥z ∥ ≤ β < q such that

Az = 0 ∈ Zn
q

• Find a “short” linear combination of column vectors to get 0.
• Note β < q as the vector (q, 0, 0, . . .) satisfies the solution.
• Non homogeneous SIS: Az = k
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Short Integer Solutions

Theorem
For any m = poly(n), β > 0, q ≥ β · poly(n), solving SISn,β,q,m is
at least as hard as solving GapSVPγ and SIVPγ for some
γ = β · poly(n).

• SIS is as hard as approximate SVP
• Intuition behind proof: We have an oracle that solves SIS,

can we then solve approximate SVP?
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Short Integer Solutions

• High level idea: we take a set of lattice vectors S ⊂ L, and
reduce it to a new set ∥S′∥ ≤ ∥S∥/2 (where ∥S∥ = max ∥Si∥)

• Iterate until vectors satisfy the SIVP condition, so we have
solved SIVP using SIS
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Short Integer Solutions

• The core reduction step is to take a set of random “somewhat
short” feasible vectors V, and provide S−1V mod q to the
oracle

• If the oracle outputs vector z, add Vz/q to the new set.
• The devil is in the details:

• Prove v ∈ L and ∥v∥ ≤ ∥S∥/2
• A must be “close enough” to a uniform matrix
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Quick Aside: Relaxing SIS

• Whole Zoo of SIS-like assumptions: useful for different
cryptography constructions

• Provide some “hint” information with the base A matrix
• Some add structure: for example, module SIS replaces

elements in the matrix with structured ring elements
• Some don’t have reductions: open problems
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Learning with Error

Definition (Learning With Error (LWEn,q,χ,m))
Given uniform random matrix A ∈ Znxm

q and

b = As + e mod q

where s is sampled from a short distribution χn and e is sampled
from a short distribution χm,
Find the vector s.

• Has a quantum reduction to GapSVP and SIVP (idk how it
works some QFFT magic)
• Also has more structured variants: Ring-LWE and friends
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Public Key Encryption

• Generate bT = sTA + eT mod q

• Public: (A,b)
• Private: (sT, eT)
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Public Key Encryption

• Encryption of bit µ:

• Choose random small x← χm

• c0 = Ax
• c1 = bTx + µ ·

⌊q
2
⌋
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Public Key Encryption

• Decryption with secret key sT:

• c1 − sTc0
• bTx + µ ·

⌊q
2
⌋
− sTAx

• eTx + µ ·
⌊q

2
⌋

• e and x are small
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Fun Lattice Things Part 2

• Ring-LWE and Ring-SIS: Elements of the matrices chosen
from cyclotomic rings

• Notion of “short” vector is different: based on the canonical
embedding
• More “structured”: security proofs are more subtle
• Security reductions are based on short vector problems in ideal

lattices (not arbitrary lattices)
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Fin

• Discussed Lattices
• Lattice based hardness assumptions
• Built cryptography from lattices!
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