Hari

• Why this?

- Why this?
- Lattices

- Why this?
- Lattices
- Cryptosystems

- Gen \rightarrow (*pk*, *sk*)
- $\operatorname{Enc}_{pk}(m) \to c$
- $\operatorname{Dec}_{sk}(c) \to m$

- Most commonly used today is RSA
- Relies on the problem of factoring two large numbers

- Most commonly used today is RSA
- Relies on the problem of factoring two large numbers
- Can be factored in polynomial time by quantum computers: Shor's algorithm

C 🔒 google	e.com	G	<	$\dot{\mathbf{r}}$,
Store	Certificate Viewer: *.google.com		×		
	General Details Certificate Hierarchy				
	 Default Trust-GTS Root R1 GTS CA 1C3 				
	*.google.com Certificate Fields				
	Certificate Policies CRL Distribution Points	1			
	Signed Certificate Timestamp List Certificate Signature Algorithm				
	Certificate Signature Value == SHA-256 Fingerprints Certificate				
	Public Key	,			
	Field Value PKCS #1 SHA-256 With RSA Encryption				
	Exp	ort			

Lattices

A discrete additive subgroup of \mathbb{R}^n

$\mathcal{L} = \mathcal{L}(\boldsymbol{B}) = \left\{\sum_{i=1}^{k} z_i \boldsymbol{b}_i : z_i \in \mathbb{Z}\right\}$

Definition (Minimum Distance)

The minimum distance of a lattice $\ensuremath{\mathcal{L}}$ is the length of the shortest nonzero lattice vector:

$$\lambda_1(\mathcal{L}) = \min_{\boldsymbol{\nu} \in \mathcal{L} \setminus \{0\}} \|\boldsymbol{\nu}\|$$

*(more generally: $\lambda_i(\mathcal{L})$ is the smallest r such that \mathcal{L} has i linearly independent vectors of norm at most r)

Shortest Vector

 $\mathcal{L}(\boldsymbol{B}) \to \lambda_1(\mathcal{L})?$

Definition (Shortest Vector Problem (SVP)) Given an arbitrary basis **B** of some lattice $\mathcal{L} = \mathcal{L}(\mathbf{B})$, find a shortest nonzero lattice vector $\mathbf{v} \in \mathcal{L}$ for which $\|\mathbf{v}\| = \lambda_1(\mathcal{L})$.

Definition (Shortest Vector Problem (SVP)) Given an arbitrary basis **B** of some lattice $\mathcal{L} = \mathcal{L}(\mathbf{B})$, find a shortest nonzero lattice vector $\mathbf{v} \in \mathcal{L}$ for which $\|\mathbf{v}\| = \lambda_1(\mathcal{L})$.

• Known to be NP hard

Definition (Shortest Vector Problem (SVP)) Given an arbitrary basis **B** of some lattice $\mathcal{L} = \mathcal{L}(\mathbf{B})$, find a shortest nonzero lattice vector $\mathbf{v} \in \mathcal{L}$ for which $\|\mathbf{v}\| = \lambda_1(\mathcal{L})$.

- Known to be NP hard
- No known polynomial time quantum algorithm

Definition (Approximate SVP (SVP_{γ})) Given a basis **B** of an *n*-dimensional lattice $\mathcal{L} = \mathcal{L}(\mathbf{B})$, find a nonzero vector $\mathbf{v} \in \mathcal{L}$ for which $\|\mathbf{v}\| \leq \gamma(n) \cdot \lambda_1(\mathcal{L})$. Definition (Approximate SVP (SVP_{γ})) Given a basis **B** of an *n*-dimensional lattice $\mathcal{L} = \mathcal{L}(\mathbf{B})$, find a nonzero vector $\mathbf{v} \in \mathcal{L}$ for which $\|\mathbf{v}\| \leq \gamma(n) \cdot \lambda_1(\mathcal{L})$.

• "kinda close"

Definition (Approximate SVP (SVP_{γ})) Given a basis **B** of an *n*-dimensional lattice $\mathcal{L} = \mathcal{L}(\mathbf{B})$, find a nonzero vector $\mathbf{v} \in \mathcal{L}$ for which $\|\mathbf{v}\| \leq \gamma(n) \cdot \lambda_1(\mathcal{L})$.

- "kinda close"
- $\gamma = 1$ is standard SVP

Definition (Decisional Approximate SVP $(GapSVP_{\gamma})$) Given a basis **B** of an *n*-dimensional lattice $\mathcal{L} = \mathcal{L}(\mathbf{B})$, where either $\lambda_1(\mathcal{L}) \leq 1$ or $\lambda_1(\mathcal{L}) > \gamma(n)$, determine which is the case. Definition (Decisional Approximate SVP $(GapSVP_{\gamma})$) Given a basis **B** of an *n*-dimensional lattice $\mathcal{L} = \mathcal{L}(\mathbf{B})$, where either $\lambda_1(\mathcal{L}) \leq 1$ or $\lambda_1(\mathcal{L}) > \gamma(n)$, determine which is the case.

• Is the shortest vector "small" or "big"

Definition (Approximate Shortest Independent Vectors $(SIVP_{\gamma})$) Given a basis **B** of a full rank *n*-dimensional lattice $\mathcal{L} = \mathcal{L}(\mathbf{B})$,

output a set $S = {s_i} \subset \mathcal{L}$ of *n* linearly independent lattice vectors where $||s_i|| \leq \gamma(n) \cdot \lambda_n(\mathcal{L})$ for all *i*.

Definition (Approximate Shortest Independent Vectors $(SIVP_{\gamma})$)

Given a basis **B** of a full rank *n*-dimensional lattice $\mathcal{L} = \mathcal{L}(\mathbf{B})$, output a set $S = {\mathbf{s}_i} \subset \mathcal{L}$ of *n* linearly independent lattice vectors where $\|\mathbf{s}_i\| \leq \gamma(n) \cdot \lambda_n(\mathcal{L})$ for all *i*.

• Give me a basis of short vectors

Bounded Distance Decoding

Definition (Bounded Distance Decoding (BDD_{γ})) Given a basis **B** of an *n*-dimensional lattice $\mathcal{L} = \mathcal{L}(\mathbf{B})$ and a target point $\mathbf{t} \in \mathbb{R}^n$ with the guarantee that

$$\operatorname{dist}(\boldsymbol{t},\mathcal{L}) < \boldsymbol{d} = \lambda_1(\mathcal{L})/(2\gamma(\boldsymbol{n}))$$

find the unique lattice vector $\mathbf{v} \in \mathcal{L}$ such that $\|\mathbf{t} - \mathbf{v}\| < d$.

Definition (Bounded Distance Decoding (BDD_{γ})) Given a basis **B** of an *n*-dimensional lattice $\mathcal{L} = \mathcal{L}(\mathbf{B})$ and a target point $\mathbf{t} \in \mathbb{R}^n$ with the guarantee that

$$\operatorname{dist}(\boldsymbol{t},\mathcal{L}) < \boldsymbol{d} = \lambda_1(\mathcal{L})/(2\gamma(n))$$

find the unique lattice vector $\mathbf{v} \in \mathcal{L}$ such that $\|\mathbf{t} - \mathbf{v}\| < d$.

• "Find the close point"

Definition (Bounded Distance Decoding (BDD_{γ})) Given a basis **B** of an *n*-dimensional lattice $\mathcal{L} = \mathcal{L}(\mathbf{B})$ and a target point $\mathbf{t} \in \mathbb{R}^n$ with the guarantee that

$$\operatorname{dist}(\boldsymbol{t},\mathcal{L}) < \boldsymbol{d} = \lambda_1(\mathcal{L})/(2\gamma(n))$$

find the unique lattice vector $\mathbf{v} \in \mathcal{L}$ such that $\|\mathbf{t} - \mathbf{v}\| < d$.

- "Find the close point"
- Equivalent to another SVP relaxation with dimension n+1

Bounded Distance Decoding

$\begin{bmatrix} B & t \\ 0 & M \end{bmatrix}$

Definition (Fundamental Parallelepiped)

$$\mathcal{P}(\boldsymbol{B}) = \{\boldsymbol{B}x : x \in \mathbb{R}^n, \forall i, 0 \le x_i \le 1\}$$

Definition (Fundamental Parallelepiped)

$$\mathcal{P}(\boldsymbol{B}) = \{\boldsymbol{B}x : x \in \mathbb{R}^n, \forall i, 0 \le x_i \le 1\}$$

Definition (Volume of a Lattice \mathcal{L})

$$\operatorname{vol}(\mathcal{L}) = \sqrt{\det\left(\boldsymbol{B}^{\mathsf{T}}\boldsymbol{B}\right)}$$

Definition (Fundamental Parallelepiped)

$$\mathcal{P}(\boldsymbol{B}) = \{\boldsymbol{B}x : x \in \mathbb{R}^n, \forall i, 0 \le x_i \le 1\}$$

Definition (Volume of a Lattice \mathcal{L})

$$\operatorname{vol}(\mathcal{L}) = \sqrt{\det\left(\boldsymbol{B}^{\mathsf{T}}\boldsymbol{B}\right)}$$

When the Lattice is full rank, we have $vol(\mathcal{L}) = |\det B|$

Theorem

Let \mathcal{L} be a lattice of rank n. Let $\mathbf{b}_1, \mathbf{b}_2, \dots \mathbf{b}_n \in \mathcal{L}$ be n linearly independent lattice vectors. Then $\mathbf{b}_1, \mathbf{b}_2, \dots \mathbf{b}_n$ form a basis of \mathcal{L} if and only if $\mathcal{P}(\mathbf{b}_1, \mathbf{b}_2, \dots \mathbf{b}_n) \cap \mathcal{L} = \{\mathbf{0}\}$.
Some Fun Lattice Things

Theorem

Two basis B_1 , B_2 span the same lattice if and only if there exists an integer unimodular matrix U ($|\det U| = 1$) such that $B_2 = B_1 U$.

Some Fun Lattice Things

Theorem (Blichfeld's Theorem) Let \mathcal{L} be a lattice, and let $S \subseteq \mathbb{R}^n$ be a set with $\operatorname{vol}(S) > \operatorname{vol}(\mathcal{L})$. Then there exists two nonequal points $z_1, z_2 \in S$ such that $z_1 - z_2 \in \mathcal{L}$.

Some Fun Lattice Things

Theorem (Minkowski's Bound) Let \mathcal{L} be a lattice. Then there is an $x \in \mathcal{L} \setminus \{0\}$ with

 $\|x\| \leq \sqrt{n} |\operatorname{vol}(\mathcal{L})|^{1/n}$

Applications

- Sphere Packing
- Crystallography
- Coding Theory and Error Correction
- Lattice based Cryptosystems
- Lattice based Cryptanalysis: CSEC@UMD (Wednesday!)

Cryptosystems

Definition (Short Integer Solutions (SIS_{*n*,*q*, β ,*m*)) Given a uniformly random matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find nonzero integer vector $\mathbf{z} \in \mathbb{Z}^m$ of norm $\|\mathbf{z}\| \leq \beta < q$ such that}

 $Az = \mathbf{0} \in \mathbb{Z}_q^n$

Definition (Short Integer Solutions $(SIS_{n,q,\beta,m})$) Given a uniformly random matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find nonzero integer vector $\mathbf{z} \in \mathbb{Z}^m$ of norm $\|\mathbf{z}\| \leq \beta < q$ such that

$$Az = \mathbf{0} \in \mathbb{Z}_q^n$$

• Find a "short" linear combination of column vectors to get **0**.

Definition (Short Integer Solutions $(SIS_{n,q,\beta,m})$) Given a uniformly random matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find nonzero integer vector $\mathbf{z} \in \mathbb{Z}^m$ of norm $\|\mathbf{z}\| \leq \beta < q$ such that

$$Az = \mathbf{0} \in \mathbb{Z}_q^n$$

- Find a "short" linear combination of column vectors to get **0**.
- Note *β* < *q* as the vector (*q*, 0, 0, . . .) satisfies the solution.

Definition (Short Integer Solutions (SIS_{*n*,*q*, β ,*m*)) Given a uniformly random matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find nonzero integer vector $\mathbf{z} \in \mathbb{Z}^m$ of norm $\|\mathbf{z}\| \leq \beta < q$ such that}

$$Az = \mathbf{0} \in \mathbb{Z}_q^n$$

- Find a "short" linear combination of column vectors to get ${f 0}.$
- Note *β* < *q* as the vector (*q*, 0, 0, . . .) satisfies the solution.
- Non homogeneous SIS: Az = k

Theorem

For any m = poly(n), $\beta > 0$, $q \ge \beta \cdot poly(n)$, solving $SIS_{n,\beta,q,m}$ is at least as hard as solving $GapSVP_{\gamma}$ and $SIVP_{\gamma}$ for some $\gamma = \beta \cdot poly(n)$.

Theorem

For any m = poly(n), $\beta > 0$, $q \ge \beta \cdot \text{poly}(n)$, solving $\text{SIS}_{n,\beta,q,m}$ is at least as hard as solving GapSVP_{γ} and SIVP_{γ} for some $\gamma = \beta \cdot \text{poly}(n)$.

• SIS is as hard as approximate SVP

Theorem

For any m = poly(n), $\beta > 0$, $q \ge \beta \cdot \text{poly}(n)$, solving $\text{SIS}_{n,\beta,q,m}$ is at least as hard as solving GapSVP_{γ} and SIVP_{γ} for some $\gamma = \beta \cdot \text{poly}(n)$.

- SIS is as hard as approximate SVP
- Intuition behind proof: We have an **oracle** that solves SIS, can we then solve approximate SVP?

 High level idea: we take a set of lattice vectors S ⊂ L, and reduce it to a new set ||S'|| ≤ ||S||/2 (where ||S|| = max ||S_i||)

- High level idea: we take a set of lattice vectors S ⊂ L, and reduce it to a new set ||S'|| ≤ ||S||/2 (where ||S|| = max ||S_i||)
- Iterate until vectors satisfy the SIVP condition, so we have solved SIVP using SIS

- High level idea: we take a set of lattice vectors S ⊂ L, and reduce it to a new set ||S'|| ≤ ||S||/2 (where ||S|| = max ||S_i||)
- Iterate until vectors satisfy the SIVP condition, so we have solved SIVP using SIS

 The core reduction step is to take a set of random "somewhat short" feasible vectors V, and provide S⁻¹V mod q to the oracle

- The core reduction step is to take a set of random "somewhat short" feasible vectors V, and provide S⁻¹V mod q to the oracle
- If the oracle outputs vector z, add Vz/q to the new set.

- The core reduction step is to take a set of random "somewhat short" feasible vectors V, and provide S⁻¹V mod q to the oracle
- If the oracle outputs vector z, add Vz/q to the new set.
- The devil is in the details:
 - Prove $v \in \mathcal{L}$ and $\|\boldsymbol{v}\| \leq \|\boldsymbol{S}\|/2$
 - A must be "close enough" to a uniform matrix

• Whole Zoo of *SIS*-like assumptions: useful for different cryptography constructions

- Whole Zoo of *SIS*-like assumptions: useful for different cryptography constructions
- Provide some "hint" information with the base **A** matrix

- Whole Zoo of *SIS*-like assumptions: useful for different cryptography constructions
- Provide some "hint" information with the base **A** matrix
- Some add structure: for example, module SIS replaces elements in the matrix with structured ring elements

- Whole Zoo of *SIS*-like assumptions: useful for different cryptography constructions
- Provide some "hint" information with the base **A** matrix
- Some add structure: for example, module SIS replaces elements in the matrix with structured ring elements
- Some don't have reductions: open problems

Learning with Error

Definition (Learning With Error $(LWE_{n,q,\chi,m})$) Given uniform random matrix $\mathbf{A} \in \mathbb{Z}_q^{n\times m}$ and

 $\boldsymbol{b} = \boldsymbol{A}\boldsymbol{s} + \boldsymbol{e} \mod q$

where \boldsymbol{s} is sampled from a short distribution χ^n and \boldsymbol{e} is sampled from a short distribution χ^m , Find the vector \boldsymbol{s} .

Learning with Error

Definition (Learning With Error $(LWE_{n,q,\chi,m})$) Given uniform random matrix $\mathbf{A} \in \mathbb{Z}_q^{n\times m}$ and

 $\boldsymbol{b} = \boldsymbol{A}\boldsymbol{s} + \boldsymbol{e} \mod q$

where **s** is sampled from a short distribution χ^n and **e** is sampled from a short distribution χ^m , Find the vector **s**.

• Has a quantum reduction to GapSVP and SIVP (idk how it works some QFFT magic)

Learning with Error

Definition (Learning With Error $(LWE_{n,q,\chi,m})$) Given uniform random matrix $\mathbf{A} \in \mathbb{Z}_q^{n\times m}$ and

 $\boldsymbol{b} = \boldsymbol{A}\boldsymbol{s} + \boldsymbol{e} \mod q$

where \boldsymbol{s} is sampled from a short distribution χ^n and \boldsymbol{e} is sampled from a short distribution χ^m , Find the vector \boldsymbol{s} .

- Has a quantum reduction to GapSVP and SIVP (idk how it works some QFFT magic)
- Also has more structured variants: Ring-LWE and friends

• Generate $\boldsymbol{b}^T = \boldsymbol{s}^T \boldsymbol{A} + \boldsymbol{e}^T \mod q$

- Generate $\boldsymbol{b}^T = \boldsymbol{s}^T \boldsymbol{A} + \boldsymbol{e}^T \mod q$
- Public: (*A*, *b*)
- Private: $(\boldsymbol{s}^T, \boldsymbol{e}^T)$

• Encryption of bit μ :

- Encryption of bit μ :
- Choose random small $\textbf{\textit{x}} \leftarrow \chi^{\textit{m}}$

- Encryption of bit μ :
- Choose random small $\textbf{\textit{x}} \leftarrow \chi^{\textit{m}}$
- $c_0 = Ax$
- $\boldsymbol{c}_1 = \boldsymbol{b}^T \boldsymbol{x} + \mu \cdot \left\lfloor \frac{q}{2} \right\rfloor$

• Decryption with secret key s^{T} :

- Decryption with secret key s^{T} :
- $c_1 s^T c_0$

- Decryption with secret key s^{T} :
- $c_1 s^T c_0$
- $\boldsymbol{b}^T \boldsymbol{x} + \boldsymbol{\mu} \cdot \lfloor \frac{q}{2} \rfloor \boldsymbol{s}^T \boldsymbol{A} \boldsymbol{x}$

- Decryption with secret key s^{T} :
- $c_1 s^T c_0$
- $\boldsymbol{b}^T \boldsymbol{x} + \boldsymbol{\mu} \cdot \lfloor \frac{q}{2} \rfloor \boldsymbol{s}^T \boldsymbol{A} \boldsymbol{x}$
- $\boldsymbol{e}^{\mathsf{T}}\boldsymbol{x} + \mu \cdot \lfloor \frac{q}{2} \rfloor$

- Decryption with secret key s^{T} :
- $c_1 s^T c_0$
- $\boldsymbol{b}^T \boldsymbol{x} + \boldsymbol{\mu} \cdot \lfloor \frac{q}{2} \rfloor \boldsymbol{s}^T \boldsymbol{A} \boldsymbol{x}$
- $e^T \mathbf{x} + \mu \cdot \lfloor \frac{q}{2} \rfloor$
- e and x are small

Fun Lattice Things Part 2

• Ring-LWE and Ring-SIS: Elements of the matrices chosen from cyclotomic rings
Fun Lattice Things Part 2

- Ring-LWE and Ring-SIS: Elements of the matrices chosen from cyclotomic rings
- Notion of "short" vector is different: based on the canonical embedding

Fun Lattice Things Part 2

- Ring-LWE and Ring-SIS: Elements of the matrices chosen from cyclotomic rings
- Notion of "short" vector is different: based on the canonical embedding
- More "structured": security proofs are more subtle

Fun Lattice Things Part 2

- Ring-LWE and Ring-SIS: Elements of the matrices chosen from cyclotomic rings
- Notion of "short" vector is different: based on the canonical embedding
- More "structured": security proofs are more subtle
- Security reductions are based on short vector problems in ideal lattices (not arbitrary lattices)

- Discussed Lattices
- Lattice based hardness assumptions
- Built cryptography from lattices!