Garbled Circuits: Intro to MPC

Multiparty Computation

Cryptography

Cryptography

Secure Communication

- AES, RSA, etc.
- WhatsApp, HTTPS

Figure 1: Double Ratchet: Signal

Figure 2: TLS: Cloudflare

Cryptography

Secure Communication

- AES, RSA, etc.
- WhatsApp, HTTPS

Figure 1: Double Ratchet: Signal

Figure 2: TLS: Cloudflare

Secure Computation

- Modern day constructions
- MPC, FE, FHE, ZK, and more
- Secure Voting and Auctions, Cryptocurrency, Secure ML

Figure 3: MPC: COSIC

Secure Multiparty Computation

 Can we compute a function of data from multiple parties securely?

Secure Multiparty Computation

 Can we compute a function of data from multiple parties securely?

Figure 4: Secure MPC: Cosic

• We have two employees, who would like to compute the average salary without revealing individual salaries.

- We have two employees, who would like to compute the average salary without revealing individual salaries.
- Train a machine learning model without revealing training datasets

- We have two employees, who would like to compute the average salary without revealing individual salaries.
- Train a machine learning model without revealing training datasets
- Evaluate some classifier on data without revealing the data or the trained model

- We have two employees, who would like to compute the average salary without revealing individual salaries.
- Train a machine learning model without revealing training datasets
- Evaluate some classifier on data without revealing the data or the trained model
- Hiding auction bids on a smart contract

- First two party protocols introduced by Yao Garbled Circuits
- Lets build it from the ground up!

- First two party protocols introduced by Yao Garbled Circuits
- Lets build it from the ground up!
- Compute function between two parties P_1 and P_2
- Both P_1 and P_2 are honest

Garbled Circuits

• Let $\mathcal{F}(x, y)$ be a function of x and y.

- Let $\mathcal{F}(x, y)$ be a function of x and y.
- Let X = {x₀, x₁,...} be the set of possible x
 Let Y = {y₀, y₁,...} be the set of possible y.

- Let $\mathcal{F}(x, y)$ be a function of x and y.
- Let $X = \{x_0, x_1, \ldots\}$ be the set of possible xLet $Y = \{y_0, y_1, \ldots\}$ be the set of possible y.
- P_1 is the party choosing x, P_2 is the party choosing y
- P_1, P_2 want to compute $\mathcal{F}(x_a, y_b)$ without revealing a, b.

• Given a function $\mathcal{F}(x, y)$, how do we evaluate $\mathcal{F}(x_a, y_b)$?

- Given a function $\mathcal{F}(x, y)$, how do we evaluate $\mathcal{F}(x_a, y_b)$?
- The function \mathcal{F} is just a table!

Table 1: A function with $X = \{x_0, x_1\}$, $Y = \{y_0, y_1\}$

	y_0	y_1
x_0	$\mathcal{F}(x_0, y_0)$	$\mathcal{F}(x_0, y_1)$
x_1	$\mathcal{F}(x_1, y_0)$	$\mathcal{F}(x_1, y_1)$

Table 2: A Garbled Function $\tilde{\mathcal{F}}$

	y_0	y_1
x_0	$\operatorname{Enc}(k_0^x \oplus k_0^y, \mathcal{F}(x_0, y_0))$	$\operatorname{Enc}(k_0^x \oplus k_1^y, \mathcal{F}(x_0, y_1))$
x_1	$\operatorname{Enc}(k_1^x \oplus k_0^y, \mathcal{F}(x_1, y_0))$	$\operatorname{Enc}(k_1^x \oplus k_1^y, \mathcal{F}(x_1, y_1))$

Table 2: A Garbled Function $\tilde{\mathcal{F}}$

	y_0	y_1
x_0	$\operatorname{Enc}(k_0^x \oplus k_0^y, \mathcal{F}(x_0, y_0))$	$\operatorname{Enc}(k_0^x \oplus k_1^y, \mathcal{F}(x_0, y_1))$
x_1	$\operatorname{Enc}(k_1^x \oplus k_0^y, \mathcal{F}(x_1, y_0))$	$\operatorname{Enc}(k_1^x \oplus k_1^y, \mathcal{F}(x_1, y_1))$

• We can send the encrypted values to P_2

Table 2: A Garbled Function $\tilde{\mathcal{F}}$

	y_0	y_1
x_0	$\operatorname{Enc}(k_0^x \oplus k_0^y, \mathcal{F}(x_0, y_0))$	$\operatorname{Enc}(k_0^x \oplus k_1^y, \mathcal{F}(x_0, y_1))$
x_1	$\operatorname{Enc}(k_1^x \oplus k_0^y, \mathcal{F}(x_1, y_0))$	$\operatorname{Enc}(k_1^x \oplus k_1^y, \mathcal{F}(x_1, y_1))$

- We can send the encrypted values to P_2
- If P₂ has the two keys associated to x_a, y_b, they can get the output!

Problem: P₂ knows which row/column is based on which value

Garbled Circuits

- Problem: P₂ knows which row/column is based on which value
- Shuffle the table

Table 3: A Garbled Function $\tilde{\mathcal{F}}$

	y_0	y_1
x_1	$\operatorname{Enc}(k_1^x \oplus k_0^y, \mathcal{F}(x_1, y_0))$	$\operatorname{Enc}(k_1^x \oplus k_1^y, \mathcal{F}(x_1, y_1))$
x_0	$\operatorname{Enc}(k_0^x \oplus k_0^y, \mathcal{F}(x_0, y_0))$	$\operatorname{Enc}(k_0^x \oplus k_1^y, \mathcal{F}(x_0, y_1))$

- Problem: P₂ knows which row/column is based on which value
- Shuffle the table

Table 3: A Garbled Function $\tilde{\mathcal{F}}$

	y_0	y_1
x_1	$\operatorname{Enc}(k_1^x \oplus k_0^y, \mathcal{F}(x_1, y_0))$	$\operatorname{Enc}(k_1^x \oplus k_1^y, \mathcal{F}(x_1, y_1))$
x_0	$\operatorname{Enc}(k_0^x \oplus k_0^y, \mathcal{F}(x_0, y_0))$	$\operatorname{Enc}(k_0^x \oplus k_1^y, \mathcal{F}(x_0, y_1))$

- Pointer value tells P_2 which row/column is correct

•
$$p_0^x$$
, $p_1^x = 1 - p_0^x$

- P_1 sends P_2 the garbled $\tilde{\mathcal{F}}$
- P_1 sends P_2 the key k^x_a and p^x_a
- How does P₂ get k^y_b without P₁ learning b?

• Introducing a new protocol: Oblivious Transfer!

- Introducing a new protocol: Oblivious Transfer!
- Alice has k^y₀ and k^y₁
- Bob has a bit b

- Introducing a new protocol: Oblivious Transfer!
- Alice has k_0^y and k_1^y
- Bob has a bit b
- Alice learns nothing, and Bob learns k_b^y

- Oblivious transfer exists
- Probably ask me later about how to construct OT
- Relies on some more cryptography concepts not taught

- Back to the garbled table
- P_1 sends $\tilde{\mathcal{F}}$, k^x_a , p^x_a
- P_1 and P_2 do Oblivious Transfer to send k_h^y, p_h^y to P_2

- Back to the garbled table
- P_1 sends $\tilde{\mathcal{F}}$, k^x_a , p^x_a
- P_1 and P_2 do Oblivious Transfer to send k_b^y, p_b^y to P_2
- With both pointers, P_2 can find the location in the table

- Back to the garbled table
- P_1 sends $\tilde{\mathcal{F}}$, k^x_a , p^x_a
- P_1 and P_2 do Oblivious Transfer to send k_b^y, p_b^y to P_2
- With both pointers, P_2 can find the location in the table
- With both keys, ${\cal P}_2$ can decrypt that row, to get the output

Figure 5: Example Circuit

Figure 5: Example Circuit

Lookup table?? Exponential

Table 4: A Garbled Gate $\tilde{\mathcal{F}}$

	y_0	y_1
x_1	$\operatorname{Enc}(k_1^x \oplus k_0^y, k_{\mathcal{F}(x_1, y_0))}^{out})$	$\operatorname{Enc}(k_1^x \oplus k_1^y, k_{\mathcal{F}(x_1, y_1)}^{out})$
x_0	$\operatorname{Enc}(k_0^x \oplus k_0^y, k_{\mathcal{F}(x_0, y_0)}^{out})$	$\operatorname{Enc}(k_0^x \oplus k_1^y, k_{\mathcal{F}(x_0, y_1)}^{out})$

Table 4: A Garbled Gate $\tilde{\mathcal{F}}$

	y_0	y_1
x_1	$\operatorname{Enc}(k_1^x \oplus k_0^y, k_{\mathcal{F}(x_1, y_0))}^{out})$	$\operatorname{Enc}(k_1^x \oplus k_1^y, k_{\mathcal{F}(x_1, y_1)}^{out})$
x_0	$\operatorname{Enc}(k_0^x \oplus k_0^y, k_{\mathcal{F}(x_0, y_0)}^{out})$	$\operatorname{Enc}(k_0^x \oplus k_1^y, k_{\mathcal{F}(x_0, y_1)}^{out})$

- Assign pair of keys (and pointers) per wire
- Can evaluate circuits gate by gate!

- This is just the surface: many more questions
- How can we do this with multiple parties?
- Can we improve communication efficiency?

- Very useful in the world of secure computation
- For example, say the circuit is a circuit which takes in an ML classifier and an image, and outputs the classification
- Allows doctors to provide medical images / data to ML models without violating HIPAA

Bonus: Funny card trick (related to MPC)!!

$(\mathbf{C},\mathbf{C})\mathbf{C}(\mathbf{C},\mathbf{C})$

Both say yes:

CCCCC

One or both says no:

CCCCC