
Multiparty Computation

Hari

1



Cryptography

Secure Communication
• AES, RSA, etc.

Double Ratchet: Signal

TLS: Cloudflare

Secure Computation
• Modern day constructions
• MPC, FE, FHE, and more
• Secure Voting and Auctions,

Cryptocurrency, Secure ML

Secure Computation: COSIC

2



Cryptography
Secure Communication

• AES, RSA, etc.

Double Ratchet: Signal

TLS: Cloudflare

Secure Computation
• Modern day constructions
• MPC, FE, FHE, and more
• Secure Voting and Auctions,

Cryptocurrency, Secure ML

Secure Computation: COSIC

2



Cryptography
Secure Communication

• AES, RSA, etc.

Double Ratchet: Signal

TLS: Cloudflare

Secure Computation
• Modern day constructions
• MPC, FE, FHE, and more
• Secure Voting and Auctions,

Cryptocurrency, Secure ML

Secure Computation: COSIC

2



Secure Multiparty Computation

• Can we compute a function of data from multiple parties
securely?

Secure MPC: Cosic

3



Secure Multiparty Computation

• Can we compute a function of data from multiple parties
securely?

Secure MPC: Cosic

3



Secure Multiparty Computation

• We have n employees, who would like to compute the average
salary without revealing individual salaries.

• Train a machine learning model without revealing training
datasets

• Hiding auction bids on a smart contract

4



Secure Multiparty Computation

• We have n employees, who would like to compute the average
salary without revealing individual salaries.

• Train a machine learning model without revealing training
datasets

• Hiding auction bids on a smart contract

4



Secure Multiparty Computation

• We have n employees, who would like to compute the average
salary without revealing individual salaries.

• Train a machine learning model without revealing training
datasets

• Hiding auction bids on a smart contract

4



Secure Multiparty Computation

• First two party protocols introduced by Yao
• Generalized to multiple parties by Goldreich, Micali, and

Widgerson

5



Secure Multiparty Computation

• First two party protocols introduced by Yao
• Generalized to multiple parties by Goldreich, Micali, and

Widgerson

5



GMW Protocol

6



Introduction to GMW
Given a function F(x1, x2, . . . xn) representable as a Boolean circuit
C, how do we evaluate it?

x0
y0

F(x, y)

Example circuit

x0
y0

x1
z0

F(x, y, z)

Slightly more complicated circuit

7



Introduction to GMW
Given a function F(x1, x2, . . . xn) representable as a Boolean circuit
C, how do we evaluate it?

x0
y0

F(x, y)

Example circuit

x0
y0

x1
z0

F(x, y, z)

Slightly more complicated circuit

7



Introduction to GMW
Given a function F(x1, x2, . . . xn) representable as a Boolean circuit
C, how do we evaluate it?

x0
y0

F(x, y)

Example circuit

x0
y0

x1
z0

F(x, y, z)

Slightly more complicated circuit

7



Introduction to GMW

• Idea: Each party gives a ”piece” of their data to the other
x0

0
y0

0
F0(x, y)

x1
0

y1
0

F1(x, y)

Example split circuit (Two parties)

• With these input pieces, each party can evaluate the circuit
• Known as secret sharing

8



Introduction to GMW

• Idea: Each party gives a ”piece” of their data to the other
x0

0
y0

0
F0(x, y)

x1
0

y1
0

F1(x, y)

Example split circuit (Two parties)

• With these input pieces, each party can evaluate the circuit
• Known as secret sharing

8



Secret Sharing

• For each bit a, we can split it into n shares as following:

• Choose random bits r0, r1, r2, . . . , rn−1
• Set rn = a ⊕ r0 ⊕ r1 ⊕ . . .⊕ rn−1
• Provide each party with one of the ri
• Notice that all parties must get together to find a
• The ri are known as secret shares or shares

9



Secret Sharing

• For each bit a, we can split it into n shares as following:
• Choose random bits r0, r1, r2, . . . , rn−1

• Set rn = a ⊕ r0 ⊕ r1 ⊕ . . .⊕ rn−1
• Provide each party with one of the ri
• Notice that all parties must get together to find a
• The ri are known as secret shares or shares

9



Secret Sharing

• For each bit a, we can split it into n shares as following:
• Choose random bits r0, r1, r2, . . . , rn−1
• Set rn = a ⊕ r0 ⊕ r1 ⊕ . . .⊕ rn−1

• Provide each party with one of the ri
• Notice that all parties must get together to find a
• The ri are known as secret shares or shares

9



Secret Sharing

• For each bit a, we can split it into n shares as following:
• Choose random bits r0, r1, r2, . . . , rn−1
• Set rn = a ⊕ r0 ⊕ r1 ⊕ . . .⊕ rn−1
• Provide each party with one of the ri
• Notice that all parties must get together to find a
• The ri are known as secret shares or shares

9



GMW

x0
0

y0
0

F0(x, y)

x1
0

y1
0

F1(x, y)

Example split circuit (Two parties)

• Party x creates the shares x0
0, x1

0 of bit x0
• Party y creates the shares y0

0, y1
0 of bit y0

• Party x gets x0
0, y0

0, Party y gets x1
0, x1

0

10



GMW

x0
0

y0
0

F0(x, y)

x1
0

y1
0

F1(x, y)

Example split circuit (Two parties)

• Party x creates the shares x0
0, x1

0 of bit x0
• Party y creates the shares y0

0, y1
0 of bit y0

• Party x gets x0
0, y0

0, Party y gets x1
0, x1

0

10



GMW

x0
0

y0
0

F0(x, y)

x1
0

y1
0

F1(x, y)

Example split circuit (Two parties)

• Party x creates the shares x0
0, x1

0 of bit x0
• Party y creates the shares y0

0, y1
0 of bit y0

• Party x gets x0
0, y0

0, Party y gets x1
0, x1

0

10



GMW

How do we evaluate this
“shared” circuit?

11



Evaluation

• Firstly, we assume our circuit only has AND, NOT, and XOR
gates (which is universal)

• When we evaluate a gate, we want to get a secret share of
the gate output

• This allows parties to continue evaluating the next gate

12



Evaluation

• Firstly, we assume our circuit only has AND, NOT, and XOR
gates (which is universal)

• When we evaluate a gate, we want to get a secret share of
the gate output

• This allows parties to continue evaluating the next gate

12



Evaluation: NOT
a0 ⊕ a1 = a

a0 NOT0(a)

a1 NOT1(a)

Shared NOT Circuit

• Notice that if we set a0 to NOT(a0), we get
NOT(a0)⊕ a1 = NOT(a)

• One party just has to flip their share

13



Evaluation: NOT
a0 ⊕ a1 = a

a0 NOT0(a)

a1 NOT1(a)

Shared NOT Circuit

• Notice that if we set a0 to NOT(a0), we get
NOT(a0)⊕ a1 = NOT(a)

• One party just has to flip their share

13



Evaluation: NOT
a0 ⊕ a1 = a

a0 NOT0(a)

a1 NOT1(a)

Shared NOT Circuit

• Notice that if we set a0 to NOT(a0), we get
NOT(a0)⊕ a1 = NOT(a)

• One party just has to flip their share
13



Evaluation: XOR

a0 ⊕ a1 = a, b0 ⊕ b1 = b

a0

b0 XOR0(a, b)

a1

b1 XOR1(a, b)

Shared XOR Circuit

• Notice that (a0 ⊕ b0)⊕ (a1 ⊕ b1) = a ⊕ b
• Then we can have each party evaluate XORi(a, b) = ai ⊕ bi

14



Evaluation: XOR

a0 ⊕ a1 = a, b0 ⊕ b1 = b

a0

b0 XOR0(a, b)

a1

b1 XOR1(a, b)

Shared XOR Circuit

• Notice that (a0 ⊕ b0)⊕ (a1 ⊕ b1) = a ⊕ b

• Then we can have each party evaluate XORi(a, b) = ai ⊕ bi

14



Evaluation: XOR

a0 ⊕ a1 = a, b0 ⊕ b1 = b

a0

b0 XOR0(a, b)

a1

b1 XOR1(a, b)

Shared XOR Circuit

• Notice that (a0 ⊕ b0)⊕ (a1 ⊕ b1) = a ⊕ b
• Then we can have each party evaluate XORi(a, b) = ai ⊕ bi

14



Evaluation: AND

a0 ⊕ a1 = a, b0 ⊕ b1 = b

a0

b0 AND0(a, b)

a1

b1 AND1(a, b)

Shared AND Circuit

How do we do this?

15



Detour: Oblivious Transfer

16



Oblivious Transfer

Definition (One out of n Oblivious Transfer)
We have two parties, the sender S and receiver R.
S has n secrets x0, x1, . . . xn.
R has a selection value v from 1 to n.

An Oblivious Transfer protocol is a protocol where
• R receives xv without learning any of the other secrets
• S does not learn v

17



Oblivious Transfer

Definition (One out of n Oblivious Transfer)
We have two parties, the sender S and receiver R.
S has n secrets x0, x1, . . . xn.
R has a selection value v from 1 to n.
An Oblivious Transfer protocol is a protocol where

• R receives xv without learning any of the other secrets
• S does not learn v

17



Oblivious Transfer

• Seems like magic: we can achieve it with public key
cryptography (ex. RSA or Discrete Log)

• (See this paper to see some examples, there are many)

• Here we treat it like a gnome inside a magic box, purpose is
not to explain OT

• (small fun fact: existence of OT is equivalent to existence of
MPC, see this)

• (ask me after for an OT example)

18

https://eprint.iacr.org/2015/267.pdf
https://dl.acm.org/doi/pdf/10.1145/62212.62215


Oblivious Transfer

• Seems like magic: we can achieve it with public key
cryptography (ex. RSA or Discrete Log)

• (See this paper to see some examples, there are many)
• Here we treat it like a gnome inside a magic box, purpose is

not to explain OT

• (small fun fact: existence of OT is equivalent to existence of
MPC, see this)

• (ask me after for an OT example)

18

https://eprint.iacr.org/2015/267.pdf
https://dl.acm.org/doi/pdf/10.1145/62212.62215


Oblivious Transfer

• Seems like magic: we can achieve it with public key
cryptography (ex. RSA or Discrete Log)

• (See this paper to see some examples, there are many)
• Here we treat it like a gnome inside a magic box, purpose is

not to explain OT
• (small fun fact: existence of OT is equivalent to existence of

MPC, see this)

• (ask me after for an OT example)

18

https://eprint.iacr.org/2015/267.pdf
https://dl.acm.org/doi/pdf/10.1145/62212.62215


Oblivious Transfer

• Seems like magic: we can achieve it with public key
cryptography (ex. RSA or Discrete Log)

• (See this paper to see some examples, there are many)
• Here we treat it like a gnome inside a magic box, purpose is

not to explain OT
• (small fun fact: existence of OT is equivalent to existence of

MPC, see this)
• (ask me after for an OT example)

18

https://eprint.iacr.org/2015/267.pdf
https://dl.acm.org/doi/pdf/10.1145/62212.62215


Oblivious Transfer

v

x1, x2, . . . xn

OT Functionality

xv

Oblivious Transfer

19



Back to GMW!

20



Evaluation: AND

a0 ⊕ a1 = a, b0 ⊕ b1 = b

a0

b0 AND0(a, b)

a1

b1 AND1(a, b)

Shared AND Circuit

How do we do this?

21



Evaluation: AND

• The second party has 4 possible values for its share values:

a1 ∈ {0, 1}

b1 ∈ {0, 1}

• From the first party’s perspective: 4 possible values for
AND(a, b):

(a0 ⊕ a1) ∧ (b0 ⊕ b1)

22



Evaluation: AND

• The second party has 4 possible values for its share values:

a1 ∈ {0, 1}

b1 ∈ {0, 1}

• From the first party’s perspective: 4 possible values for
AND(a, b):

(a0 ⊕ a1) ∧ (b0 ⊕ b1)

22



Evaluation: AND

• The second party has 4 possible values for its share values:

a1 ∈ {0, 1}

b1 ∈ {0, 1}

• From the first party’s perspective: 4 possible values for
AND(a, b):

(a0 ⊕ a1) ∧ (b0 ⊕ b1)

22



Evaluation: AND

• The first party can select a random bit r ∈ {0, 1}, and create
4 “possible” secret shares

r ⊕
(
(a0 ⊕ 0) ∧ (b0 ⊕ 0)

)
r ⊕

(
(a0 ⊕ 0) ∧ (b0 ⊕ 1)

)
r ⊕

(
(a0 ⊕ 1) ∧ (b0 ⊕ 0)

)
r ⊕

(
(a0 ⊕ 1) ∧ (b0 ⊕ 1)

)


• Then the first party uses 1 out of 4 Oblivious Transfer to send
the share

• Notice that we get a secret share of the AND value!

23



Evaluation: AND

• The first party can select a random bit r ∈ {0, 1}, and create
4 “possible” secret shares

r ⊕
(
(a0 ⊕ 0) ∧ (b0 ⊕ 0)

)
r ⊕

(
(a0 ⊕ 0) ∧ (b0 ⊕ 1)

)
r ⊕

(
(a0 ⊕ 1) ∧ (b0 ⊕ 0)

)
r ⊕

(
(a0 ⊕ 1) ∧ (b0 ⊕ 1)

)


• Then the first party uses 1 out of 4 Oblivious Transfer to send
the share

• Notice that we get a secret share of the AND value!

23



GMW

• And we’re done! We can evaluate any circuit, and then at the
end we reconstruct the secret with the shares.

x0
y0

x1
y0

F(x, y)

Example Circuit

24



GMW: Multiple Parties

• How do we do multiple parties?

• NOT gates: Only one person still needs to flip their share

¬(a0 ⊕ a1 ⊕ a2 . . .) = (¬a0)⊕ a1 ⊕ a2 . . .

• XOR gates: All parties still xor their shares together

(a0 ⊕ a1 ⊕ a2 . . .)⊕ (b0 ⊕ b1 ⊕ b2 . . .)

= (a0 ⊕ b0)⊕ (a1 ⊕ b1)⊕ . . .

• AND gates: ???

25



GMW: Multiple Parties

• How do we do multiple parties?
• NOT gates: Only one person still needs to flip their share

¬(a0 ⊕ a1 ⊕ a2 . . .) = (¬a0)⊕ a1 ⊕ a2 . . .

• XOR gates: All parties still xor their shares together

(a0 ⊕ a1 ⊕ a2 . . .)⊕ (b0 ⊕ b1 ⊕ b2 . . .)

= (a0 ⊕ b0)⊕ (a1 ⊕ b1)⊕ . . .

• AND gates: ???

25



GMW: Multiple Parties

• How do we do multiple parties?
• NOT gates: Only one person still needs to flip their share

¬(a0 ⊕ a1 ⊕ a2 . . .) = (¬a0)⊕ a1 ⊕ a2 . . .

• XOR gates: All parties still xor their shares together

(a0 ⊕ a1 ⊕ a2 . . .)⊕ (b0 ⊕ b1 ⊕ b2 . . .)

= (a0 ⊕ b0)⊕ (a1 ⊕ b1)⊕ . . .

• AND gates: ???

25



GMW: Multiple Parties

• AND gates: We can see

(a0 ⊕ a1 ⊕ a2 . . .) ∧ (b0 ⊕ b1 ⊕ b2 . . .)

=

⊕
i∈[n]

ai ∧ bi

⊕

⊕
i̸=j

ai ∧ bj


• The left side can be computed by each party locally (AND

each share)

• Shares of every pair of parties on the right can be obtained
through the OT protocol

• Reduce the multiparty problem into a set of two party
problems

26



GMW: Multiple Parties

• AND gates: We can see

(a0 ⊕ a1 ⊕ a2 . . .) ∧ (b0 ⊕ b1 ⊕ b2 . . .)

=

⊕
i∈[n]

ai ∧ bi

⊕

⊕
i̸=j

ai ∧ bj


• The left side can be computed by each party locally (AND

each share)
• Shares of every pair of parties on the right can be obtained

through the OT protocol

• Reduce the multiparty problem into a set of two party
problems

26



GMW: Multiple Parties

• AND gates: We can see

(a0 ⊕ a1 ⊕ a2 . . .) ∧ (b0 ⊕ b1 ⊕ b2 . . .)

=

⊕
i∈[n]

ai ∧ bi

⊕

⊕
i̸=j

ai ∧ bj


• The left side can be computed by each party locally (AND

each share)
• Shares of every pair of parties on the right can be obtained

through the OT protocol
• Reduce the multiparty problem into a set of two party

problems

26



GMW Summary

• We can evaluate circuits now!

• We first split up each input bit into shares for each party
• Each party can then evaluate the circuit gate by gate using

their shares
• In the end they can reconstruct the output by using output

shares

27



GMW Summary

• We can evaluate circuits now!
• We first split up each input bit into shares for each party

• Each party can then evaluate the circuit gate by gate using
their shares

• In the end they can reconstruct the output by using output
shares

27



GMW Summary

• We can evaluate circuits now!
• We first split up each input bit into shares for each party
• Each party can then evaluate the circuit gate by gate using

their shares

• In the end they can reconstruct the output by using output
shares

27



GMW Summary

• We can evaluate circuits now!
• We first split up each input bit into shares for each party
• Each party can then evaluate the circuit gate by gate using

their shares
• In the end they can reconstruct the output by using output

shares

27



More Fun Things

• This is just the surface: many more questions
• Can you evaluate functions securely if there are malicious

parties?
• Can we improve round complexity and communication

efficiency?

28



More Fun Things

• Very useful in the world of secure computation
• For example, say the circuit is a circuit which takes in an ML

classifier and an image, and outputs the classification
• Allows doctors to provide medical images / data to ML

models without violating HIPAA

29



More Fun Things

Bonus: Funny card trick (related to MPC)!!

30


