Multiparty Computation

Hari

Cryptography

Cryptography

Secure Communication
e AES, RSA, etc.

Ratchet Root Sending Receiving
- Y
L
- Ak E

@n-
- A 3
DH ratchet Symmetric-key ratchet

Double Ratchet: Signal

TLS: Cloudflare

Cryptography

Secure Communication
e AES, RSA, etc.

DH ratchet Symmetric-key ratchet [

Double Ratchet: Signal

vvvvvv

TLS: Cloudflare

Secure Computation

® Modern day constructions
e MPC, FE, FHE, and more

® Secure Voting and Auctions,
Cryptocurrency, Secure ML

é

o— °

i\
\

\
/

F

S
3

Dec(@) =F()

o 4
& .
W=

Secure Computation: COSIC

Secure Multiparty Computation

® Can we compute a function of data from multiple parties
securely?

Secure Multiparty Computation

® Can we compute a function of data from multiple parties
securely?

a°
o _F,\,,,@,J,_g@

@g/ \ 8

Secure MPC: Cosic

Secure Multiparty Computation

® \We have n employees, who would like to compute the average
salary without revealing individual salaries.

Secure Multiparty Computation

® \We have n employees, who would like to compute the average
salary without revealing individual salaries.

® Train a machine learning model without revealing training
datasets

Secure Multiparty Computation

® \We have n employees, who would like to compute the average
salary without revealing individual salaries.

® Train a machine learning model without revealing training
datasets

® Hiding auction bids on a smart contract

Secure Multiparty Computation

® First two party protocols introduced by Yao

® Generalized to multiple parties by Goldreich, Micali, and
Widgerson

Secure Multiparty Computation

® First two party protocols introduced by Yao

® Generalized to multiple parties by Goldreich, Micali, and
Widgerson

GMW Protocol

Introduction to GMW

Given a function F(xi, x2, ... x,) representable as a Boolean circuit
C, how do we evaluate it?

Introduction to GMW

Given a function F(xi, x2, ... x,) representable as a Boolean circuit
C, how do we evaluate it?

Example circuit

Introduction to GMW

Given a function F(xi, x2, ... x,) representable as a Boolean circuit
C, how do we evaluate it?

X0
B D F(xy)

Example circuit

X0 —
Yo
D F(x,y,2)
x1
7o |

Slightly more complicated circuit

Introduction to GMW

® |dea: Each party gives a
X8 _
)/8 _

X(l)%

"piece” of their data to the other

> FO(x)

y(1)4

>fl(xvy)

Example split circuit (Two parties)

Introduction to GMW

® |dea: Each party gives a "piece” of their data to the other

x8« 0
y84>f (%)
th)% 1
y(l)A}f (%)

Example split circuit (Two parties)

® With these input pieces, each party can evaluate the circuit

® Known as secret sharing

Secret Sharing

® For each bit a, we can split it into n shares as following:

Secret Sharing

® For each bit a, we can split it into n shares as following:

® Choose random bits rg, ri, o, ..., rn—1

Secret Sharing

® For each bit a, we can split it into n shares as following:
® Choose random bits rg, ri, o, ..., rn—1
e Setr,=adrnnd®n®... P rh—1

Secret Sharing

For each bit a, we can split it into n shares as following:

Choose random bits rg, i, 2, ..., rh_1
e Setr,=adrnnd®n®... P rh—1
Provide each party with one of the r;

Notice that all parties must get together to find a

The r; are known as secret shares or shares

GMW

X8 | 0

}/8 %> F (X7y)
o

¥ 4> e

Example split circuit (Two parties)

10

GMW

X8 | 0

}/8 %> F (X7y)
o

¥ 4> e

Example split circuit (Two parties)

® Party x creates the shares X3, x} of bit xo
® Party y creates the shares 3, y} of bit yo

10

GMW

X8 | 0

}/8 %> F (X7y)
o

¥ 4> e

Example split circuit (Two parties)

® Party x creates the shares X3, x} of bit xo
® Party y creates the shares 3, y} of bit yo
® Party x gets xg,yg, Party y gets x(l), x(l)

10

GMW

How do we evaluate this
“shared” circuit?

11

Evaluation

® Firstly, we assume our circuit only has AND, NOT, and XOR
gates (which is universal)

12

Evaluation

® Firstly, we assume our circuit only has AND, NOT, and XOR
gates (which is universal)

® \When we evaluate a gate, we want to get a secret share of
the gate output

® This allows parties to continue evaluating the next gate

12

Evaluation: NOT

Lpat=a
a® NOTO(a)
at NOT(a)

Shared NOT Circuit

13

Evaluation: NOT

Lpat=a
a® NOTO(a)
at NOT(a)

Shared NOT Circuit

® Notice that if we set a° to NOT(a°), we get
NOT(a%) @ a* = NOT(a)

13

Evaluation: NOT

Lpat=a
a® NOTO(a)
at NOT(a)

Shared NOT Circuit

® Notice that if we set a° to NOT(a°), we get
NOT(a%) @ a* = NOT(a)

® One party just has to flip their share

13

Evaluation: XOR

d@al=abpb=>b

ZZ jD XOR(a, b)
al
e jD XOR'(a, b)

Shared XOR Circuit

14

Evaluation: XOR

d@al=abpb=>b

ZZ jD XOR(a, b)
al
e jD XOR'(a, b)

Shared XOR Circuit

® Notice that (@)@ (@ b)=ad b

14

Evaluation: XOR

d@al=abpb=>b

ZZ jD XOR(a, b)
al
e jD XOR'(a, b)

Shared XOR Circuit

® Notice that (@)@ (@ b)=ad b
® Then we can have each party evaluate XORi(a, b)y=a @b

14

Evaluation: AND

P@at=abPeb=>b

j:::}ANDOab

AND!(a, b)

Shared AND Circuit

How do we do this?

15

Detour: Oblivious Transfer

Oblivious Transfer

Definition (One out of n Oblivious Transfer)

We have two parties, the sender & and receiver R.
S has n secrets xp, X1, - - - Xp.
‘R has a selection value v from 1 to n.

17

Oblivious Transfer

Definition (One out of n Oblivious Transfer)

We have two parties, the sender & and receiver R.
S has n secrets xp, X1, - - - Xp.

R has a selection value v from 1 to n.

An Oblivious Transfer protocol is a protocol where

® R receives x, without learning any of the other secrets

® S does not learn v

17

Oblivious Transfer

® Seems like magic: we can achieve it with public key
cryptography (ex. RSA or Discrete Log)

® (See this paper to see some examples, there are many)

18

https://eprint.iacr.org/2015/267.pdf
https://dl.acm.org/doi/pdf/10.1145/62212.62215

Oblivious Transfer

® Seems like magic: we can achieve it with public key
cryptography (ex. RSA or Discrete Log)

® (See this paper to see some examples, there are many)

® Here we treat it like a gnome inside a magic box, purpose is
not to explain OT

18

https://eprint.iacr.org/2015/267.pdf
https://dl.acm.org/doi/pdf/10.1145/62212.62215

Oblivious Transfer

Seems like magic: we can achieve it with public key
cryptography (ex. RSA or Discrete Log)

(See this paper to see some examples, there are many)

Here we treat it like a gnome inside a magic box, purpose is
not to explain OT

(small fun fact: existence of OT is equivalent to existence of
MPC, see this)

18

https://eprint.iacr.org/2015/267.pdf
https://dl.acm.org/doi/pdf/10.1145/62212.62215

Oblivious Transfer

Seems like magic: we can achieve it with public key
cryptography (ex. RSA or Discrete Log)

(See this paper to see some examples, there are many)

Here we treat it like a gnome inside a magic box, purpose is
not to explain OT

(small fun fact: existence of OT is equivalent to existence of
MPC, see this)

(ask me after for an OT example)

18

https://eprint.iacr.org/2015/267.pdf
https://dl.acm.org/doi/pdf/10.1145/62212.62215

Oblivious Transfer

OT Functionality

[
-

X1,X2,...Xp

Oblivious Transfer

Xy

19

Back to GMW!

Evaluation: AND

L dat=a @b =b

Shared AND Circuit

AND?(a, b)

AND!(a, b)

How do we do this?

21

Evaluation: AND

® The second party has 4 possible values for its share values:
al €{0,1}

bt € {0,1}

22

Evaluation: AND

® The second party has 4 possible values for its share values:
at € {0,1}
b € {0,1}

® From the first party's perspective: 4 possible values for

AND(a, b):
(@ a')A (@b

22

Evaluation: AND

® The second party has 4 possible values for its share values:
at € {0,1}
b € {0,1}

® From the first party's perspective: 4 possible values for

AND(a, b):
(@ a')A (@b

22

Evaluation: AND

® The first party can select a random bit r € {0,1}, and create
4 “possible” secret shares

@ ((° @ 0) A (° @ 0))
@ ((L@0)A (K ©1))
o (el A°®0))
o (el Ael))

23

Evaluation: AND

® The first party can select a random bit r € {0,1}, and create
4 “possible” secret shares

@ ((° @ 0) A (° @ 0))
@ ((L@0)A (K ©1))
o (el A°®0))
o (el Ael))

® Then the first party uses 1 out of 4 Oblivious Transfer to send
the share

® Notice that we get a secret share of the AND value!

23

GMW

® And we're done! We can evaluate any circuit, and then at the
end we reconstruct the secret with the shares.

D F(xy)

Example Circuit

X0 —

Yo —

X1 —

Yo —

24

GMW: Multiple Parties

® How do we do multiple parties?

25

GMW: Multiple Parties

® How do we do multiple parties?

® NOT gates: Only one person still needs to flip their share
—(oaed.)=l ..
® XOR gates: All parties still xor their shares together

(Poael..)eBebab..)
=(Le)e('e)e...

25

GMW: Multiple Parties

How do we do multiple parties?

NOT gates: Only one person still needs to flip their share

—(oaed.)=l ..

XOR gates: All parties still xor their shares together

(Poael..)eBebab..)
=(Le)e('e)e...

AND gates: 777

25

GMW: Multiple Parties

o AND gates: We can see
(Poaoa. .)APPobab..)
= @ai/\bi @ @ai/\bj

ie[n] i#j

® The left side can be computed by each party locally (AND
each share)

26

GMW: Multiple Parties

o AND gates: We can see

(Poaoa. .)APPobab..)

= @ai/\bi &3] @ai/\bj
i€[n]

i#j
® The left side can be computed by each party locally (AND

each share)

® Shares of every pair of parties on the right can be obtained
through the OT protocol

26

GMW: Multiple Parties

AND gates: We can see

(Poaoa. .)APPobab..)

_(@env)e(@sry
i€[n]

i#j

The left side can be computed by each party locally (AND
each share)

Shares of every pair of parties on the right can be obtained
through the OT protocol

Reduce the multiparty problem into a set of two party
problems

26

GMW Summary

® \\e can evaluate circuits now!

27

GMW Summary

® \\e can evaluate circuits now!

® We first split up each input bit into shares for each party

27

GMW Summary

® \We can evaluate circuits now!
® We first split up each input bit into shares for each party

® FEach party can then evaluate the circuit gate by gate using
their shares

27

GMW Summary

® \\e can evaluate circuits now!

We first split up each input bit into shares for each party

Each party can then evaluate the circuit gate by gate using
their shares

In the end they can reconstruct the output by using output
shares

27

More Fun Things

® This is just the surface: many more questions
e Can you evaluate functions securely if there are malicious
parties?

® Can we improve round complexity and communication
efficiency?

28

More Fun Things

® Very useful in the world of secure computation

® For example, say the circuit is a circuit which takes in an ML
classifier and an image, and outputs the classification

® Allows doctors to provide medical images / data to ML
models without violating HIPAA

29

More Fun Things

Bonus: Funny card trick (related to MPC)!!

30

