
CMSC330

Hari



Contents

1 Introduction 4
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Programming Language Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Object Orientedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 PL Theory and Tech Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Python 6
2.1 Logistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Higher Order Functions 8
3.1 Standard Higher-Order Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Regular Expressions and FSA 10
4.1 Replacements with Regex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Finite state automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 OCaml 17
5.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Bytecode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3 Stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4 Types and Type Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.5 Unit Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.6 Generic Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.7 User Defined Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.8 Binding and Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.9 Mutability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.10 Match . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.11 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.12 Functions and Lambda Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.13 Higher Order Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.14 More Occam Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.15 Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2



CONTENTS

5.16 Algebraic or Variant Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Context Free Grammars 48
6.1 CFGs and Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Lexing and Parsing 53
7.1 Lexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.4 Advanced Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.5 Advanced Lexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.6 Advanced Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8 Lambda Calculus 60

9 Operational Semantics 64

10 Rust 67
10.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
10.2 Stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10.3 Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10.4 Ownership of Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
10.5 Slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
10.6 Struct and Enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10.7 Traits and Impl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
10.8 Lifetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3



Chapter 1

Introduction

1.1 Introduction
• Professor Kauffman

• kauffman77@gmail.com

• Office Hours Tue/Wed 1–2pm in IRB2226

• Synced with 1xx and 2xx sections

1.2 Programming Language Definitions
Programming languages can follow two different typing disciplines. Either they are

Definition 1 (Static). Static typing means that variables are bound to the same type of data
over their lifetime.

or

Definition 2 (Dynamic). Variables may be bound to data of differing types over their lifetime.

Definition 3 (Explicit). Explicit typing (or manifest typing) means that we must specify the
type when assigning a variable.

Definition 4 (Implicit). Implicit typing (or latent typing) means that we do not have to specify
the type, so the compiler can infer types from expressions.

They can also broadly fall into two paradigms.
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CHAPTER 1. INTRODUCTION PL Theory and Tech Introduction

Definition 5 (Imperative Paradigm). Emphasizes variables with values that change over time,
similar to a Turing Machine.

Definition 6 (Functional Paradigm). Favors immutable data, bindings are fixed but new versions
can be created, similar to Lambda Calculus

1.3 Object Orientedness
The real question we have to be asking is what makes a language object oriented and what
is object orientedness?.

The answers to these questions are a little complicated, as object orientedness does not have a
small easy definition. The best way to distinguish is through dynamic dispatch.

Definition 7 (Dynamic Dispatch). Automatically selecting and executing one of several versions
functions based on the type of data. This occurs with polymorphism, where you can change
the definition of a function with subclasses. This package is known as a method.

Another distinguishing feature is the use of polymorphism and class hierarchies with inheritance.
However, object oriented programming comes with a grave flaw, seen in the Kingdom of Nouns.
In this class we will be looking at 4 languages. Two imperative as reference: Java and Python.

And the two new ones are OCaml and Racket, which are functional languages!

“These are your father’s parens, elegant weapons
from a more civilized time.”

– xkcd

1.4 PL Theory and Tech Introduction
A glimpse into the future:

Finite state machines are models in which formal languages can be recognized, and can be used
to build implementations of regular expressions.

Deterministic Finite State Automata needs each transition to be uniquely determined by
its source state and input symbol and reading an input symbol is required for each transition.

Nondeterministic Finite State Automata relaxes those restrictions and can be smaller.
Therefore, we can multiple transitions which are accepted, and if any of the possible paths are
accepted, then the string is accepted.

Regular expressions are used for complex string matching and replacement.
Lexing and Parsing involves processing the raw input text of a program into a data structure,

which can be interpreted or compiled to assembly language. The input text is transformed into
tokens which is then converted to an abstract syntax tree. We can hand roll code for this or use
Lex or YACC to automate it.

5
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Chapter 2

Python

2.1 Logistics
Reading: here

2.2 History
• Development started in late 1980s

• Version 2 released in 2000

• Version 3 released in 2008, NOT backwards compatible

• Comes with a lot of bells and whistles builtin

2.3 Stuff
• Comments

• Statements

• Variable Types

• Assignment

• I/O

• Functions

• Conditionals

• Iterations

• Aggregate data such as arrays, maps

• Library System

6
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CHAPTER 2. PYTHON Example

2.4 Example

# a global variable
verbose = True
# a function definition taking a couple parameters
def collatz(start,maxsteps):

cur = start
step = 0
if verbose:

print("start:",start,"maxsteps:",maxsteps)
print("Step Current")
print(f"{step:3}: {cur:5}")

while cur != 1 and step < maxsteps:
step += 1
if cur % 2 == 0:

cur = cur // 2 # // for integer division
else:

cur = cur*3 + 1
if verbose:

print(f"{step:3}: {cur:5}")
return (cur,step)

start_str = input("Collatz start val:\n")
start = int(start_str)
(final,steps) = collatz(start, 500)
print(f"Reached {final} after {steps} iters")

Listing 1: Collatz
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Chapter 3

Higher Order Functions

We can treat functions like “values”. These are referred to as First-Class Functions, though this
term carries additional obligations of which python does not fulfill everything.

Definition 8 (Higher Order Functions (kinda)). Higher order functions are functions that accept
function arguments or return functions (or both).

def apply_all(func_list, data):
data_list = []
for func in func_list:

data_list.append(func(data))
return data_list

Listing 2: Higher order function

3.1 Standard Higher-Order Functions
• Map: Creates a new data structure with the function applied to each element.

• Filter: Creates a new data structure with elements that return True from a function.

• Reduce: Repeatedly apply function to an element of the data structure and an accumulator,
converting the data structure to a single value.

Python supports generators or iterators. These only contain a function next() which
returns the next value in the iterator, or none if it is empty. This makes a much more efficient way
to store large lists and apply higher order functions.

8



CHAPTER 3. HIGHER ORDER FUNCTIONS Standard Higher-Order Functions

Definition 9 (Lambda syntax). Python contains Lambda expressions, which is a syntax to
create a function body without naming the function. Sometimes referred to as an anonymous
function.

print(list(map(lambda y: 2*y, [1,2,3,4,5])))
# [2, 4, 6, 8, 10]

Listing 3: Lambda

Unfortunately in python, though lamdbas can accept multiple arguments, it is only a single line,
cannot use conditionals, and it must be a single expression. OCaml and Racket have richer support
for Lambdas and lexical closures.

9



Chapter 4

Regular Expressions and FSA

Definition 10 (Regular Expression). Regular expressions is a domain specific mini-language used
to describe text patterns, to easily recognize and select patterns.

Summary of symbols:

Table 4.1: Symbols

Syntax Matches

ab The fixed string ab
a+ One or more of a , as many as possible
a* Zero or more of a , as many as possible

a b| Match a or b
a{2, 5} Match 2 to 5 a as in aa , aaa , . . .
a{2,} Match 2 or more a
a{,5} Match 0 to 5 a

a? Match 0 or 1 a
[0-9] Char range 0 to 9

\d Any digit character 0-9
[a-z] Any lowercase character

\w Any word character
. Any single character
\b A boundary (but don’t include in match)
\s Whitespace (spaces, tabs, newlines)

• Regular expressions are a mini language or DSL often embedded in other programming lan-
gauges

• Regex text is usually compiled to a lower form, typically a finite state machine.
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CHAPTER 4. REGULAR EXPRESSIONS AND FSA Replacements with Regex

• They have their own syntax in different programming languages

• They are not a full programming language

Typically python strings have their own escape sequences using backslash, so we typically use
raw strings prefixing with r.

>>> print("Hello \bworld")
Helloworld
>>> print(r"Hello \bworld")
Hello \bworld

Listing 4: Raw String

Essential functions:

Table 4.2: Essential functions

import re Use regex module
re.findall(regex, text) Produce a list of all matching substrings
re.split(regex, text) Produce a list of strings between matches
re.search(regex, text) Produce a Match object or None

re.finditer(regex, text) Produce an iterable object for Matches
m.group() Produce the whole string that matched the regex

m[0] Produce the whole string that matched the regex
m.span() Produce a pair of (beg, end) index of match in string

If we only want to search for if matches are found, we can use re.search(regex, text) and
check if its Match or None .

4.1 Replacements with Regex
We can use regex groups to find and replace using regex. For example, to replace
Chapter X Section Y with Chapter X.Y , we can first capture the X and Y using a regex group.

r"Chapter (\d+) Section (\d+)"

Listing 5: Regex Groups

11



Finite state automata CHAPTER 4. REGULAR EXPRESSIONS AND FSA

Remark. Group 0 is the whole match, Group 1 is the leftmost ( to its matching ) . And so
on until the number of groups are exhausted.

Substitutions use the syntax \1 to refer to Group 2, \2 to refer to Group 3, and so on. We
use re.sub(regex, subst, text, num_occurrences (optional)) to substitute all occurrences
of regex with subst in text. If you want to limit the substitutions to the first n occurrences, there
is also an optional parameter.

Finally, we can compile regexs down to a finite state machine for improved efficiency using
re.compile .

4.2 Finite state automata
Introducing: Automata Theory!! We can figure out limits of what is possible and what is not
and with what. For example, it is impossible to recognize Regular expressions with Boolean Logic.

Definition 11 (Finite state automata). Formally, a finite state automata is defined to be a tuple
(Σ, S, s0, F, δ) where

• Σ is the alphabet or set of allowable characters on each edge of the graph

• S is the set of states (vertices in the graph)

• s0 the starting vertex

• F is the set of final / accept states (vertices)

• δ is the set of labeled edges, each labeled with an element from the alphabet

A finite state automata accepts a language (a subset of the powerset of an alphabet) if all
words in the language L are accepted (end on an accept state).

Finite state automata are directed graphs which indicate to what state we must go based on an
input from the alphabet. We can find multiple regexs which satisfy a finite state automata, and
multiple finite state automata which satisfy a regex.

Definition 12 (Deterministic Finite State Automata). An FSA is deterministic if from every state
there is one unique edge corresponding to an element from the alphabet.

Definition 13 (Nondeterministic Finite State Automata). An FSA is nondeterministic if there are
nonunique edges with the same element from the alphabet. There are three main differences:

• Input characters can appear on multiple edges from a state (choices)

• Input characters can appear on no edges from a state

• The ϵ character can be on an edge, which means we can transition to the next state

12



CHAPTER 4. REGULAR EXPRESSIONS AND FSA Finite state automata

without consuming any input.

To evaluate whether the NFA accepts a string, we go over all possible state transitions and see
if any one accepts.

Theorem 1 (DFA). The minimal deterministic finite state automata is unique.

Previously we introduced Regular Expressions through code informally. However, we can also
provide a formal definition, just as we did for the finite state automata.

Definition 14 (Formal Regular Expression). Formally, a regular expression is defined recursively.
It can be

• ϵ: the empty string

• ∅: the empty set of no regexs

• A single item a ∈ Σ from an alphabet.

• R1R2: concatenation of two regexs

• R1|R2: union or alternation of two regexs

• R∗
1: zero or more of a regex, called the Kleene Closure

This parts form a minimal set that allow construction of all the convenient regex mechanisms
that we have shown previously.

Example (Shorthand). Informally, we say [ab]+ , but formally this is (a|b)(a|b)∗.

Example (Shorthand). Informally, we say a?b+aa , but formally this is (a|ϵ)bb∗aa

Definition 15 (Regular Languages). A language is Regular if some Finite State Machine accepts
it. The FSM may be either deterministic or non-deterministic.

Theorem 2 (Regularity). A language is regular if and only if some Regular Expression
describes it.

Proof 1. (Idea). Show a procedure to convert a regular expression into an NFA. We can
convert a regular expression into a parse tree with each operation (Star, Concat, Union) and
the leaves are from the alphabet. Next we can basically build an NFA from the bottom up,
piecing together from simple NFAs which accept on just a character.

13



Finite state automata CHAPTER 4. REGULAR EXPRESSIONS AND FSA

Proof 2. (One sided: The other direction involves converting a DFA into a generalized NFA
into a regular expression and is a little more involved). We want to convert any regular
expression into an NFA. Let R be an arbitrary regular expression. Here we are going to use
structural induction to show any regular expression can be converted to an NFA recognizing
the same language.

• If R = a for some a ∈ Σ. Then L(R) = {a}, which is recognized by an NFA with two
states, one input and one edge with a going to an accepting state. Formally this NFA is
(Σ, {q1, q2} , q1, {q2} , {(q1, a, q2)}).

• If R = ϵ, then L(R) = {ϵ}, and an NFA with one state accepting recognizes this language.
Formally this NFA is (Σ, {q1} , q1, {q1} ,∅).

• If R = ∅, then the one state non accepting NFA recognizes it. Formally, this is
(Σ, {q1} , q1,∅,∅)

• If R = R1|R2, let (Σ, Q1, q1, F1, E1) be an NFA recognizing R1 and (Σ, Q2, q2, F2, E2)
recognize R2. Then we see that the following NFA recognizes L(R).

(Σ, {i} ∪Q1 ∪Q2, i, F1 ∪ F2, E1 ∪ E2 ∪ {(i, ϵ, q1), (i, ϵ, q2)})

• If R = R1R2, let (Σ, Q1, q1, F1, E1, E1) be an NFA recognizing R1 and (Σ, Q2, q2, F2, E2)
be an NFA recognizing R2. Then the concatenation is recognized by

(Σ, Q1 ∪Q2, q1, F2, E1 ∪ E2 ∪ {(f, ϵ, q2)|f ∈ F1})

• If R = R∗
1, let (Σ, Q1, q1, F1, E1) be an NFA that recognizes R1. Then the following NFA

recognizes R∗
1.

{Σ, {i} ∪Q1, i, {i} ∪ F1, E1 ∪ {(f, ϵ, q1)} |f ∈ F1}

Theorem 3 (Closure). Regular expressions are closed under the 3 regular operations of
concatenation, union, and Kleene closure. All regular expressions that exist can be built from
simpler regular expressions with these operations.

Remark. See Sipser’s Introduction to the Theory of Computation to see these proofs.

Example (Equal AB). Let Equal-ABs be the set of all strings starting with n “a” characters
and followed by n “b” characters.

Equal-AB = {anbn|n > 0}

No such DFA or Regular Expression exists to match this.

14



CHAPTER 4. REGULAR EXPRESSIONS AND FSA Finite state automata

Example (Balanced Parenthesis). No DFA or Regular expression exists that matches properly
balanced parenthesis.

Example (Compiling Regular Expressions). How do we compile a regular expression R to use it?
We first convert it into an NFA through the definition of regular. Then we convert the NFA
into a DFA by the equivalence (all NFAs have an equivalent DFA).

Example (Full Compilation: What we want to get to). By our previous theorems, we can finally
do the following:

Informal Regex R NFA DFA

Theorem 4 (NFA to DFA). A nondeterministic finite state automata can be converted into a
deterministic finite state automata.

Proof 3. We first show a conversion from an arbitrary NFA

(Σ, S, s0, F, δ)

without epsilon transitions to a DFA (Σ′, S′, s′0, F
′, δ′).

• Let Σ′ = Σ.

• Let S′ = P (S), or the powerset of the set of states.

• Let s′0 = {s0} ∈ P (S). The starting state corresponds to the set with just the starting
state.

• Let F ′ ⊆ S′ = {V ∈ P (S) | ∃f ∈ F, f ∈ V } The DFA accepts if one of the possible NFA
states we could be in is an accepting state (there is an accepting state in our set of NFA
states).

• Let

δ′ =

{(
V, a,

∪
v∈V

{si | (vi, a, si) ∈ δ}

)
| V ∈ P (S), a ∈ Σ

}

The transition for x from a state in our DFA V is constructed by taking the union of all
possible x transitions from an NFA state in v ∈ V , eg (v, x, new state). We take all the
states it could transition to, and consider the set {s0, s1, . . .} as our edge. If the set is
empty, we add (V, x,∅ ∈ P (S)) as our edge. We also add all edges (∅, x,∅) (covered by
the set definition).

15



Finite state automata CHAPTER 4. REGULAR EXPRESSIONS AND FSA

Definition 16 (Epsilon Closure). We define E(R) to be the epsilon closure of a state R in an
NFA as

{q | q can be reached from R by traveling along zero or more ϵ transitions}

Proof 4. We continue our previous proof, (full proof this time, including epsilon transitions).
We can redefine

s′0 = E ({s0})

and

δ′ =

{(
V, a,

∪
v∈V

E ({si | (vi, a, si) ∈ δ})

)
| V ∈ P (S), a ∈ Σ

}
We allow transitions to now include states that are zero or more epsilon transitions away

from the ending state, and let the starting state contain all of the epsilon transitions away
from the starting state. And now we are finished, as this is a DFA which accepts A.

Algorithmically, this is inefficient however. We could eliminate dead states after NFA to DFA
conversion by getting rid of the unreachable states after a traversal (with BFS / DFS). However,
this algorithm is not good. Notice how we have to create a full powerset of the states.

Theorem 5 (Lazy NFA to DFA Algorithmic Evaluation). We can keep track of two collections of
states, Completed and Todo.

• Add the Starting state as a Todo state.

• Select one “active” state from the Todo state.

• Determine all of the transitions for the “active” state. Any transition to a state not
already seen gets added to the Todo.

• Mark Active state as completed, and repeat until no Todo states exist.

Finally, add all garbage states.

16



Chapter 5

OCaml

5.1 History
• Alonzo Church invents Lambda Calculus, a notation to describe computable functions.

• John McCarthy creates Lisp, a programming language modeled after Lambda Calculus. Lisp
influenced almost every language that came after it and created new Lisp flavors such as
Common Lisp, Emacs Lisp, Scheme, andRacket.

• Robin Milner developed the LCF theorem prover to do math things.

• They invented a Meta Language (ML) which is like Lisp with a type system to tell LCF how
to do proofs.

• Xavier Leroy saw ML and realized that its pretty bad as there was no compiler, and it could
not run on a personal computer.

– Leroy develops CAML to allow separate compilation to bytecode and linking
– Later work introduced ab object system, which is now called Objective Caml, or OCaml.
– Native code compiler
– Time traveling debugger

5.2 Bytecode

Definition 17 (Native Code Compilation). Convert source code to a form directly understandable
by a CPU.

Definition 18 (Bytecode Compilation). Convert source code to an intermediate form (bytecode)
that must be further converted to native code by an interpreter.

17



Bytecode CHAPTER 5. OCAML

Definition 19 (Source Code Interpreter). Directly execute source code as it is read by doing on
the fly convertions to native code.

• Java: Compile to bytecode: javac , Interpret to native: java

• C / C++: Native code compilation: gcc , clang

• Python: Interpret source code with on the fly bytecode creation: python , REPL: python

• OCaml: Compile to bytecode: ocamlc , Interpret to native: ocamlrun , Native code compi-
lation: ocamlopt , REPL: ocaml

Native code compilation is much faster, BUT we cannot use OCaml’s awesome debugger. OCaml
is fun because of functional paradigms!!

18



CHAPTER 5. OCAML Bytecode

(* collatz.ml: introductory OCaml example demonstrating a variety of
its features. Compile/Run this via

>> ocamlc collatz.ml # byte-compile to a.out
>> ./a.out # run the program
Alternatively one can run directly via
>> ocaml collatz.ml

*)
open Printf;;
(* allow printf() calls rather than Printf.printf() *)

let verbose = true;;
(* module-level var; will end these with ;; for *)
(* clarity but can leave it off if desired *)
let collatz start maxsteps =
(* functions defined via name followed by parameters *)

let cur = ref start in (* let/in introduce name/value bindings *)
let step = ref 0 in (* immutable by default, ref allows mutability *)
if verbose then (* main body of collatz func *)

begin (* several statements in an if/then require *)
printf "start: %d maxsteps %d\n"
(* a begin/end block like { } in other languages *)

start maxsteps;
(* no parens around function calls *)

printf "Step Current\n";
(* Side-effect statements like printing/mutation require ; *)

end; (* end of if/then *)

while !cur != 1 && !step < maxsteps do
(* deref a reference via ! (bang) *)
if verbose then

printf "%3d: %5d\n" !step !cur;
(* print if verbose is enabled *)

begin match !cur mod 2 with
(* MATCH different cases given expression: 0 or 1 *)
| 0 -> cur := !cur/2; (* rem=0: even case *)
| _ -> cur := !cur*3+1; (* rem!=0: odd case *)
end; (* begin/end for match that is done for side-effects *)
step := !step + 1;

done;
(!cur,!step) (* final expression to appear is return value *)

;; (* end of collatz function *)

let _ = (* equivalent of a "main" block *)
print_string "Collatz start val:\n"; (* simple string printing *)
let start = read_int () in (* read an int and convert it *)

let (final,steps) = collatz start 500 in
(* call function and capture return tuple *)
printf "Reached %d after %d iters\n" final steps;
(* print result *)

;;

Listing 6: Collatz in OCaml
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Types and Type Inference CHAPTER 5. OCAML

5.3 Stuff
• Comments: (* abc *)

• Statements: expressions such as x+1 or a && b or printf "\%d" a;

Variables are introduced via let x = .. in

• Variable types: string, integer boolean are obvious. Though OCaml is statically typed, it can
infer types.

• Assignment via let x = expr in or x := expr;

• Basic IO: printf() or read_int()

• Function declarations: let funcname param1 param2 =

• Conditionals (if else): if cond then .. else ..
Multiple statements require begin / end (Match coming soon)

• Iteration (loops): clearly while cond do , others soon

• Aggregate data: (arrays , records, objects, etc): (ocaml, has, tuples) and others we’ll
discuss soon.

• Library system: open Printf is like from Printf import *

5.4 Types and Type Inference
OCaml has type inference, meaning programs do not need to state types explicitly. While explicit
types don’t appear during normal compilation, they are always present and will appear in error
messages.

OCaml has a variety of basic types, such as int , float , bool , string . There are also a
few special types: unit and 'a .

OCaml also comes with aggregate types.

# let ia = [|1; 2; 3|];;
val ia : int array = [|1; 2; 3|]

# let sl = ["a"; "b";];;
val sl : string list = ["a"; "b"]

# let tup = (true, 4.56, "hi");;
val tup : bool * float * string = (true, 4.56, "hi")

Listing 7: Aggregate Types
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Finally, there are function types. Every function is associated with a type with each parameter
and the final return type. This is denoted by each parameter separated with -> and finally the
return type.

# let add a b = a+b;;
val add : int -> int -> int = <fun>

# add;;
- : int -> int -> int = <fun>

# let selfcat s = s ^ s;;
val selfcat : string -> string = <fun>

# int_of_string;;
- : string -> int = <fun>

# let add_pair (a, b) = a+b;;
val add_pair : int * int -> int = <fun>

# let give_meaning () = 42;;
val give_meaning : unit -> int = <fun>

# let poly_meaning x = 42;;
val poly_meaning : 'a -> int = <fun>

Listing 8: Function Types

• Though types are inferred, we can also annotate the code with types if necessary.

• Conflicts between annotated types and inferred types will cause compiler errors

• We can look at Ocaml’s Module System which includes Interface Files that state the types of
all functions/variables, known as the module signature.

# let x : int = 5;;
val x : int = 5

# let add (a : int) (b : int) : int = a+b;;
val add : int -> int -> int = <fun>

Listing 9: Type Annotations
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5.5 Unit Type
• The notation () means unit and is the return value of functions that only perform side

effects.

• Roughly equivalent to void in C or Java.

• Often appears as return type for output functions

• Usually don’t worry about unit returns, don’t bind the result, and so on

• Functions with no parameters are passed () to call them

• End statements returning unit with a semi-colon (;) except at the top level where ;;
is used instead.

# print_string;;
- : string -> unit = <fun>

# print_string "hi\n";;
hi
- : unit = ()

Listing 10: Unit Type

5.6 Generic Types
Generic types are labeled as ′a. This indicates any type. For example, if we have a type

val func : 'a -> 'b -> 'a -> 'a

Listing 11: Generics

This is a function that takes 3 arguments. The first two arguments must be the same type, and
the second does not, and it returns the type of the first argument.

5.7 User Defined Types
User defined types are like a typedef in C. The type keyword allows for an alias.
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type ilist = int list ;;
let f x : ilist = [1; 2; 3; 4];;

Listing 12: Int List

We can also have Variant types, which act like enums.

type parity = Even | Odd;;

let swap x = match x with
| Even -> Odd
| Odd -> Even

;;

Listing 13: Variant Types

The Variant types can also hold data within them.

type parity = Even of int | Odd of int;;

let add x = match x with
| Even(x) -> Odd(x + 1)
| Odd(x) -> Even(x + 1)

;;

Listing 14: Holding Data

They can also be different.

type shape = Rect of int * int | Circle of float;;

let area s = match s with
| Rect (w, l) -> float_of_int (w * l)
| Circle r -> r *. r *. 3.14

;;

Listing 15: Holding Different Data

23



Binding and Syntax CHAPTER 5. OCAML

They can also be recursive.

type linked = Item of string * linked | Null ;;

let head lst = match lst with
| Item(x, _) -> x
| Null -> ""

;;

Listing 16: Linked Node

The types can also be generic.

type 'a option =
Some of 'a | None;;

Listing 17: Data Types

5.8 Binding and Syntax
• Names bound to values are introduced with the let keyword.

• At the top level, separate these wit double semi-colon ;;

let name = "Chris";;
let doubler a =

2 * a
;;

let pair_to_list (a,b) =
[a; b];;

Listing 18: Source File Example

Bindings can also be nested arbitrarily, and this can be used to do computations.
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Note. When writing .ml files, known as Modules, ending top level bindings with ;; are
optional. This is not necessary in source files, but are required in REPL.

let first =
let x = 1 in
let y = 5 in
y*2 + x

;;

let second =
let s = "TAR" in
let t = "DIS" in
s ^ t

;;

Listing 19: Bindings

Note however that local bindings are local. Therefore,

let a = (* top level binding *)
let x = "hello" in (* local binding *)
let y = " " in (* local binding *)
let z = "world" in (* local binding *)
x^y^z (* result *)

;; (* x,y,z go out of scope *)

print_endline a;;

print_endline x;; (* x is not defined *)

Listing 20: Bad Example

This is an example which will not compile. The scope of x is only within the local binding.
Meanwhile, a is bound at the top level, so it has a module-level scope.

We can fix this like so:
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let x = "hello";;

let a = (* top level binding *)
let y = " " in (* local binding *)
let z = "world" in (* local binding *)
x^y^z (* result *)

;; (* y,z go out of scope *)

print_endline a;;

print_endline x;; (* x is defined *)

Listing 21: Fixed Example

5.9 Mutability
• OCaml’s default is immutable bindings. Once a name is bound, it holds its value until going

out of scope.

• Each let/in binding creates a scope where a name is bound to a value.

• We can “approximate” mutability with successive let/in bindings.

OCaml, as a functional language, tries to follow referential transparency.

Definition 20 (Referential Transparency). If you replace an expression by the value it evaluates
to, it will be the same.

This means that the state does not change when evaluating an expression. For example, with
referential transparency, the expression

f(x) + f(x) + f(x)

will evaluate to 3 · f(x). However, with side effects,

f(x) + f(x) + f(x)

will not necessarily evaluate to 3 · f(x).
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let x = 5 in (* local: bind FIRST_x to 5 *)
let x = x + 5 in (* local: SECOND_x is FIRST_x + 5, FIRST_x gone

*)↪→

print_int x;; (* prints 10: most recent SECOND_x *)
(* top level: SECOND_x out of scope *)

print_endline "";;

Listing 22: Approximate Mutability

OCaml however, does have explicit mutability via several mechanisms.

• ref : references which can be explicitly changed

• arrays: cells are mutable by default

• records: fields can be labeled mutable and then changed

let x = 7;; (* top level x <------+ *)
let y = (* top level y <----+ | *)

let z = x+5 in (* z = 12 = 7+ 5 | | *)
let x = x+2 in (* x = 9 = 7+ 2 | | *)
let z = z+2 in (* z = 14 = 12+ 2 | | *)
z+x;; (* 14+0 = 23 -------+ | *)

(* end local scope | | *)
print_int y;; (* prints 23 -------+ | *)
print_endline "";; (* | *)

(* | *)
print_int x;; (* prints 7 ----------+ *)
print_endline "";; (* *)

Listing 23: Let In Bindings

How do we do things without immutability? Oftentimes we can use recursion, and mutable
versus immutable variables often provide advantages to verify program correctness and parallelism.

We can create recursive functions using a let rec binding (this is kinda annoying tbh). Typ-
ically functional languages use tail call optimization to prevent stack overflow as recursion is very
powerful in functional programming.
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Remark. Tail call optimization occurs if the recursive call occurs right at the end of the func-
tion. This can be optimized, as the stack frame the current function is using can mostly be
discarded, so the stack frame of the subcall can replace the current stack frame in use.

5.10 Match
• OCaml allows for destructuring data in various ways.

• Pattern Matching is often used with data types in OCaml to determine the structure of
data and make decisions on it.

match something with
| pattern1 -> result 1
| pattern 2 ->

action;
result2

| pattern3 -> result3

Listing 24: Matching

let yoda_say bool =
match bool with

| true -> printf "False, it is not.\n"
| false -> printf "Not true, it is.\n"

;;

Listing 25: Yoda Say
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let counsel mood =
let message =

match mood with
| "sad" -> "Welcome to adult life"
| "angry" -> "Blame your parents"
| "happy" -> "Why are you here"
| "ecstatic" -> "I'll have some of what you're smoking"
| s -> "Tell me more about "^s

in
print_endline message;

Listing 26: Counsel Mood

We can also match tuples. We can use an underscore to mean that we don’t care or ignore.

open Printf;;

let has_meaning pair =
match pair with

| (42,42) -> "full of meaning"
| (42,_) -> "meaning first" (* _ : don't care / ignore *)
| (_,42) -> "meaning second"
| _ -> "there is no meaning"

;;
let print_meaning a b c =

match a,b,c with
| 4,2,_ (* both patterns use same action *)
| _,4,2 -> printf "There is meaning\n";
| x,y,z -> printf "\%d \%d \%d have no meaning\n" x y z;

;;

Listing 27: Matching Tuples
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let xor a b =
match a,b with

| true, false
| false, true -> true
| _ -> false

;;

Listing 28: xor

let rec fib n =
match n with

| 0 -> 0
| 1 -> 1
| n -> (fib (n - 1)) + (fib (n - 2))

;;

Listing 29: Fibonacci

Definition 21 (Declarative Programming). Declarative Programming states how the output re-
lates to the input, does not detail how to produce that output.

Pattern matching is declarative, if data matches this pattern, do the following. However, exactly
how this pattern is detected is left to the OCaml compiler. The compiler does guarantee first-to-
last checking of patterns.

5.11 Lists
• Long tradition of Cons boxes and singly linked lists in Lisp / ML languages.

• OCaml has immediate list construction with square braces: [1;2;3]

Linked lists are comprised of “cons” boxes in OCaml. Each box has a data part and a pointer
to another box (which is possible null).

Linked lists are written as let ilist = [6; 1; 2];; .
Arrays in OCaml consist of a length value and a list of pointers to each value in the array. They

can be defined as following:
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# let i = 7;; (* i = [ 7 ] *)

# let str = "e";; (* str = [ p ]-> "e" *)

# let empty = [];; (* empty = [ null ] *)

# let ilist = [6; 1];;
(* ilist = [ p ] -> [ 6 | p ] -> [1 | null ] *)

# let strlist = ["a"; "b"];;
(* strlist = [ p ] -> [ p | p ] -> [ p | null ] *)
(* | | *)
(* V V *)
(* "a" "b" *)

# let iarr = [|6; 1; 2|];;
(* iarr = [ p ] -> [ 3 (len) | 6 | 1 | 2 ] *)

Listing 30: Linked Lists and Arrays

• List.hd returns the first data element

• List.tl returns the remaining list

let list1 = [6; 1];;
let first = List.hd list1;;
let rest = List.tl list1;;
let len = List.length rest;
let nothing = List.tl rest;
(* tail of length 1 list is null *)

Listing 31: Head and Tail

We can also construct a list using the “Cons” operator. For example,
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let box1 = 7 :: [];; (* box1 = [ 7 ] *)
let box2 = 6 :: box1;; (* box2 = [6; 7] *)
(* can construct a linked list using cons operator *)

Listing 32: Cons Operator

Lists are immutable in Ocaml.
We can use the pattern matching with the Cons operator.

let rec length_A list =
match list with

| [] -> 0
| head :: tail -> 1 + (length_A tail)

;;

Listing 33: Length

Line 4 here binds the names head and tail. The compiler generates code such as
let head = List.hd list in and
let tail = List.tl list in .

Pattern matching is also relatively safe. The following will work and not generate any errors
despite ordering of cases.

let rec length_A list =
match list with

| head :: tail -> 1 + (length_A tail)
| [] -> 0

;;

Listing 34: Length Ordered
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(* Create a list of sum of adjacent pairs of elements in list. Last
element in an odd length list is part of the return as is. *)↪→

let rec sum_adj list =
if list = [] then

[]
else

let a = List.hd list in
let atail = List.tl list in
if atail = [] then

[a]
else

let b = List.hd atail in
let tail = List.tl atail in
(a+b) :: (sum_adj tail)

;;
(* We destructure the list and select cases based on that *)

Listing 35: Summing Adjacent Elements

let rec sum_adj list =
match list with

| [] -> []
| a :: [] -> [a]
| a :: b :: tail ->

(a+b) :: sum_adj tail
;;

Listing 36: Sum Adjacent Match

let rec swap_adj list =
match list with

| a :: b :: tail ->
b :: a :: swap_adj tail

| _ -> []
;;

Listing 37: Swap Adjacent
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Minor Match Details:

• First pattern: the pipe is optional.

• Fall through cases: no action -> is given, use next action

• (Note: fall through won’t work when there is a name bound. The name must be bound on
both sides for it to work. See here.)

• Underscore matches something, no name bound.

• Arrays work in pattern matching but there is no size generalization. Arrays are not defined
inductively, so don’t usually process them with pattern matching.

The compiler will check for

• Duplicate cases, where one is unreachable.

• Missing cases, where data does not match a pattern.

There are limits to pattern matching, however! Patterns can check structural parts and con-
stants. However, names are always new bindings, and we cannot compare bindings to each other.
We also cannot call functions in a pattern.

let rec count_occur elem list =
match list with

| [] -> 0
| head :: tail ->

if head=elem then
1 + (count_occur elem tail)

else
count_occur elem tail

;;

Listing 38: Conditional Pattern Matching

However, introducing when guards!! We can check additional conditions, and call functions
inside the when guard!
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let rec count_occur elem list =
match list with

| [] -> 0
| head :: tail when head=elem ->

1 + (count_occur elem tail)
| head :: tail ->

count_occur elem tail
;;

Listing 39: Count Occurrences

Note in this example since it is first to last pattern checking, we hit the when clause first if it is
true.

let rec longer_minlen minlen list =
match list with

| [] -> []
| str :: tail when String.length str > minlen ->

str :: (longer_minlen minlen tail)
| _ :: tail ->

longer_minlen minlen tail
;;

Listing 40: Minlen
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let elems_between start stop list =
let rec helper i lst =

match lst with
| _ when i > stop ->

[]
| _ :: tail when i < start ->

helper (i + 1) tail
| head :: tail ->

head :: (helper (i + 1) tail)
| _ -> failwith "out of bounds"

in
helper 0 list

;;

Listing 41: Elements Between

5.12 Functions and Lambda Expressions
Rather than lambda , OCaml provides anonymous functions via the fun syntax.

let add1_stand x =
let xp1 = x + 1 in
xp1

;;

let add1_lambda =
(fun x ->

let xp1 = x + 1 in
xp1)

;;

let eight = add1_stand 7;;
let ate = add1_lambda 7;;

Listing 42: Anonymous Functions

Note. There is an equivalence between let func a = .. and let func = fun a -> .. .
The former is syntactical sugar for the latter.

We can use fun syntax as arguments to higher order functions.
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let evens list =
filter (fun n -> n mod 2 = 0) list

Listing 43: Higher Order Functions

If predicates are more than a couple lines, favor a named helper function with nicely formatted
source code for readability.

let is_some list =
let pred opt =

match opt with
| Some a -> true
| None -> false

in
filter pred list

;;

Listing 44: Some

Fun syntax can be used anywhere a value is expected including but not limited to:

• Top level let bindings

• Local let/in bindings

• Elements of arrays, lists, tuples

• Values referred to by refs

• Fields of records

let func_ref = ref (fun s -> s ^ " " ^ s);;
let bambam = !func_ref "bam";;
func_ref := (fun s -> "!!!");;
let exclaim = !func_ref "bam";;

Listing 45: Fun syntax
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5.13 Higher Order Functions
Higher order functions have 4 major families.

Table 5.1: Higher Order Functions

Pattern Description Library Functions

Filter Selects some elements from a DS List.filter, Array.filter
('a -> bool) -> 'a DS -> 'a DS Map.filter, Hashtbl.filter

Iterate Perform side effects on each element of a DS List.iter, Array.iter
('a -> unit) -> 'a DS -> unit Queue.iter, Map.iter

Map Create a new DS with different elements, same size List.map, Array.map
('a -> 'b) -> 'a DS -> 'b DS Map.map

Fold Compute a single value based on all DS elements List.fold_left
('a -> 'b -> 'a) -> 'a -> 'b DS -> 'a Array.fold_right

Queue.fold, Map.fold
Hashtbl.fold

let ilist = [9; 5; 2; 6; 5; 1;];;
let silist = [("a", 2); ("b", 9); ("d", 7)];;
let ref_list = [ref 1.5; ref 3.6; ref 2.4; ref 7.1];;

List.iter (fun i -> printf "\%d\n" i) ilist;;

List.iter (fun (s, i)-> printf "str: \%s int: \%d\n" s i) silist;;

List.iter (fun r-> r := !r *. 2.0) ref_list;;

Listing 46: Iter

let rec iter func list =
match list with

| [] -> ()
| h :: t -> func hd;

iter func t
;;

Listing 47: Sample Iter definition
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Note. Note that this is tail recursive.

let ilist = [9; 5; 2; 6; 5; 1;];;

let doubled_list = List.map (fun n-> 2 * n) ilist;;

let as_strings_list = List.map string_of_int ilist;;

let silist = [("a", 2); ("b", 9); ("d", 7)];;
let ref_list = [ref 1.5; ref 3.6; ref 2.4; ref 7.1];;

let swapped = List.map ( fun (s, i) -> (i, s)) silist;;

let first_only = List.map fst silist;;

let derefed = List.map (!) ref_list;;

let with_square_list =
List.map (fun r -> (!r, !r *. !r)) ref_list;;

Listing 48: Map

let rec map trans list =
match list with
| [] -> []
| head :: tail -> (trans head) :: (map trans tail)

;;

Listing 49: Simple Map Implementation

Folding allows us to reduce all elements to a computed value or accumulate all elements to a
final result. Folding is very general, it is possible to write Iter, Filter, and Map via only Fold. This
is left as an exercise, and it is a good thing to do.
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(*
val List.fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

cur elem next init the list result
*)
let fold_left func init list =

let rec help cur lst =
match list with
| [] -> cur
| head::tail -> let next = func cur head in

help next tail
in
help init list

;;

Listing 50: Fold Left Implementation

let ilist = [9; 5; 2; 6; 5; 1;];;

let sum_list = List.fold_left (+) 0 ilist;

let sumsquare =
List.fold_left (fun sum n -> sum + n * n) 0 ilist;;

Listing 51: Fold Left uses

Note that folded values can be data structures. However, since the motion of fold_left from left
to right, the resulting lists are in reverse order.

let ilist = [9; 5; 2; 6; 5; 1;];;

let rev_list = List.fold_left (fun cur x -> x :: cur) [] ilist ;;

let ref_seqlists =
List.fold_left
(fun all x -> (x :: (List.hd all) ) :: all)
[[]] ilist ;;

Listing 52: Fold Left DS
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However, we can also fold from right to left. This is NOT tail recursive, but it does allow in
order results.

let rec fold_right func list init =
match list with

| [] -> init
| head :: tail ->

let rest = fold_right func tail init in
func head rest

Listing 53: Sample R2L Fold Implementation

Note the differences with the fold_left implementation, where we use a helper function.

let nums = [1; 2; 3; 4];;

List.fold_right (fun e l -> e :: l) nums [];;

Listing 54: Right to left Folding

Note. How do we fold over a tree? The general functional way of defining a fold is to replace all
constructors with functions. For example, if our list is defined by a :: (b :: (c :: [])) ,
then we replace the :: operator with a function.

For trees, we replace each node constructor with a function taking in three arguments (the
accumulator and the left and right values). For example,

let rec fold_tree f a t =
match t with

| Leaf -> a
| Node (l, x, r) ->

f x (fold_tree f a l) (fold_tree f a r);;

Listing 55: Fold Tree

Note. Map and Fold/Reduce are nice ways to transform lists. However, in some cases, our
list is way too large to fit into memory or even on a disk (Big Data). In that case, we can
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use generators and distributed map-reduce frameworks to process large data (such as
Apache Hadoop or Google MapReduce). After specifying a few functions to map and reduce
data, these frameworks build a distributed way to compute these through map and reduce
workers.

5.14 More Occam Data Types

Table 5.2: Aggregate Data Structures

Elements Access Mutable Example
List Homogeneous Index/PatMatch No [1;2;3]

Array Homogeneous Index Yes [|1;2;3|]
Tuples Heterogeneous PatMatch No (1, "two", 3.0)

Records Heterogeneous Field/PatMatch No/Yes name="Sam"; age=21
Variant N/A PatMatch No type letter = A | B | C;

5.15 Records
• Heterogeneous with named fields like structs

• Dot notation is used to access record field values

• Records and fields are immutable by default

• Create new records using with syntax to replace field values

• Fields declared mutable are changeable using the ← operator
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type hobbit = { name : string; age : int};;
let bilbo = { name = "Bilbo"; age = 111 };;
let sam = { name = "Samwise"; age = 21 };;
let smeagol = { name = "Smeagol"; age = 300 };;

sam.age;;
same.name;;

let old_sam = {sam with age=100};;
let gollum = { smeagol with name = "Gollum"; age = 589 };;

type mut_hob = {
mutable name : string;
age : int

};;

let h = { name = "Smeagol"; age = 25};;
h.name <- "Gollum";;

let rec hobbit_bdays (lst : mut_hob list) =
match lst with

| [] -> []
| hob :: tail ->
{ hob with age = hob.age + 1 } :: (hobbit_bdays tail)

;;

Listing 56: OCaml Records

Note that the ref type in OCaml is actually just a record with a single mutable field. For
example:
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type 'a myref = { mutable contents : 'a };;

(* Create a myref, same as the ref function *)
let make_ref x =

{contents = x};;

(* Dereference a reference *)
let deref myref =

myref.contents;;

(* Define symbol to be the same function as above; prefix operator
as above *)↪→

let (!) myref =
myref.contents;;

(* Define an assignment function *)
let assign myref x =

myref.contents <- x;;

(* Define symbol to be same as above; infix op same as default *)
let (:=) myref x =

myref.contents <- x;;

Listing 57: Refs
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5.16 Algebraic or Variant Data Types

type fruit =
Apple of string | Orange | Grapes of int;;

let a = Apple("Fuji");;
let g = Grapes(7);;

let count_fruit f =
match f with

| Apple(_) -> 1
| Orange -> 1
| Grapes(n) -> n

;;

Listing 58: Fruits

• Kind of like enums in C and java

• More powerful, allows pattern matching

• Algebraic or Variant types allows different kinds of values associated with a label

• Note that though an algebraic type is a single type, its variants may have different kinds of
data associated with them.

type identifier =
| Email of string
| Phone of int

;;

let mixed_list = [
Email "example@gmail.com";
Phone 301301301;
Email "example@yahoo.com";
Phone 123456789;

];;

Listing 59: Variant Types

We can also pattern match.
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type identifier =
| Email of string
| Phone of int

;;

let rec sum_phones list =
match list with

| [] -> 0
| (Phone i)::tail ->

i + (sum_phones tail)
| _::tail ->

sum_phones tail
;;

Listing 60: Sum Phones

Option type! This is used to indicate presence or absence of something. This is often used as a
return value, in case of errors.

type 'a option = None | Some of 'a;;

Listing 61: Option

• Instead of throwing errors, we can return None or Some.

• Exceptions crash the program, while None propagates the error.

• Many builtin operators have alternatives: either return Some ’a / None, or return ’a / throw
a Not_found exception.

Note that lists are also algebraic types.

type 'a mylist =
| Empty
| Cons of ('a * 'a mylist)

;;

Listing 62: List Type

We can see that we can also have recursive algebraic types. This is also useful for trees:
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type mytree =
| Leaf
| Node of 'a * strtree * strtree

;;

Listing 63: Tree Data Structure

Anonymous records can also be used to name objects when hard to understand.

type mytree =
| Leaf
| Node of { data : 'a;

left : mytree;
right : mytree}

;;

Listing 64: Tree Data Structure with Record

Another interesting type: Result. We can use multiple type parameters.

type ('a, 'b) result = Ok of 'a | Error of 'b;;

Listing 65: Exception
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Context Free Grammars

Definition 22 (Context Free Grammar). A context free grammar is a 4 tuple (V,Σ, R, S), where

1. V is a finite set called the variables,

2. Σ is a finite set disjoint from V , called the terminals,

3. R is a finite set of rules, with each rule being a pair of a variable and a string of variables
and terminals,

4. S ∈ V is the start variable.

If u, v and w are strings of variables and terminals, and A → w is a rule of the grammar, we say
that uAv yields uwv, written as

uAv =⇒ uwv

We say that u derives v, written as u =⇒ v, if u = v or if a sequence u1, u2, . . . uk exists for k ≥ 0
and

u =⇒ u1 =⇒ u2 =⇒ . . . uk =⇒ v

The language of the grammar is {w ∈ Σ∗|S =⇒ w}. The ϵ terminal can also be used as an empty
string.

Example (Equal ABs).

1. X → aXb

2. X → ϵ
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Example (Derive aabb).

X ⇒1 aXb

⇒1 aaXbb

⇒2 aabb

Example (PlusTimes).

1. A→ A+A

2. A→ A ·A

3. A→ N

4. N → DN

5. N → D

6. D → 0|1|2|3| . . . |9

Example (Deriving PlusTimes).

A⇒1 A+A

⇒2 A ∗A+A

⇒3 N ∗A+A

⇒3 N ∗N +A

⇒3 N ∗N +N

⇒4 DN ∗N +N

⇒5 DD ∗N +N

⇒4 DD ∗DN +N

⇒5 DD ∗DD +N

⇒5 DD ∗DD +D

⇒5 12 ∗ 34 + 5

Context-Free Grammars can also be represented by Parse Trees, which are graphical represen-
tations of a string being derived from a CFG. This is typically how the strings are represented in
code.

Definition 23 (Leftmost Derivation). A derivation of a string w in G is a leftmost derivation if
at every step the leftmost remaining variable is the one replaced.
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Definition 24 (Rightmost Derivation). A derivation of a string w in G is a rightmost derivation
if at every step the rightmost remaining variable is the one replaced.

Definition 25 (Ambiguity). A string w is derived ambiguously in context free grammar G if it
has two or more different leftmost derivations. A grammar G is ambiguous if it generates some
string ambiguously.

Example (Converting to Non Ambiguous). Convert the following Grammar to a non ambiguous
grammar, where the precedence is ∼,∩,∪.

S → S ∩ S

S → S ∪ S

S →∼ S

S → T

T → true|false|a|b|c

We can convert this by yielding all ∪ first, then ∩, and then ∼, so we get

S → S ∪ T |T

T → T ∩A|A

A→∼ A|B

B → true|false|a|b|c

Theorem 6 (Proving Ambiguity). We can prove a Grammar is ambiguous by using only leftmost
derivations and deriving the same string via two different derivations.

Definition 26 (Chomsky Normal Form). A context free grammar is in Chomsky normal form if
every rule is of the form

A→ BC

A→ a

where a is any terminal and A,B,C are any variables, except B,C cannot be the start variable.
In addition, we permit the rule S → ϵ, where S is the start variable.

Theorem 7. Any context free language is generated by a context free grammar in Chomsky
normal form.

50



CHAPTER 6. CONTEXT FREE GRAMMARS CFGs and Parsing

6.1 CFGs and Parsing

Definition 27 (Operator Precedence). When creating CFGs to parse programming languages,
often associate production rules for different levels of operator precedence. High precedence
will be lower down in the CFG / parse tree.

Example (Unary Math). Let the CFG be the following:

A→ A+A|A−A|M

M →M ∗M |M/M |T

T → N |U

U → −N

N → number

If we parse 5 + 12/− 3− 7 using leftmost derivation, we get

(5 + (12/(−3))− 7)

Definition 28 (Cycle). A CFG has a cycle if we can derive some string s which contains the
non terminal symbol A from A. For example: A→ B → A

Example (Programming). Consider the following CFG.

A→ (B)

A→ id|number

B → BA

B → A

where id is any identifier like x, +, foo, ∗. All of the following can be derived from this
CFG:

hello
(doit)
(+ 1 2 3)
(define (double x) (* x 2))
(let ((a 7) (b 9)) (+ a (* 10 b)))

Listing 66: Some Parsing CFG
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There is a distinction between parse trees and abstract syntax trees. Parse trees show all
characters and how they would derive from a CFG. ASTs eliminate some raw characters. For
example, Add and Mul would be nodes in an AST, while they would be symbols or leaves in a
CFG.
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Lexing and Parsing

How do we process code to compile it?

• Get input: For example, 5 + 10*4 + 7*(3+2)

• Lex input to tokens: [Int 5; Plus; Int 10; Times; Int 4; Plus; . . .

• Parse tokens to an expression tree:
Add(Const(5), Add(Mul(Const(10), Const(4)), . . .

• Evaluate tree: 80

7.1 Lexing
• Raw input is just a bunch of characters

• Lexing is done to ease processing later on

• Group characters into tokens

type token = Plus | Times | OParen | CParen | Int of int;;

Listing 67: Token

• More extensive arithmetic will include Subtraction, Division, Floating Point

• Full programming languages have variable identifiers, keywords like let/in and for/do

• Typically spaces do not get tokenized

• Some tokens can consist of multiple characters
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let lex_string string =
let len = String.length string in
let rec lex pos =

if pos >= len then
[]

else
match string [pos] with
|' ' | '\t' | '\n' -> lex (pos + 1)
| '+' -> Plus :: (lex (pos + 1))
| '*' -> Times :: (lex (pos + 1))
| '(' -> OParen :: (lex (pos + 1))
| ')' -> CParen :: (lex (pos + 1))
| d when is_digit d ->

let stop = ref pos in
while !stop < len && is_digit string.[!stop] do

incr stop;
done;
let numstr = String.sub string pos (!stop - pos)
let num = int_of_string numstr in
Int(num) :: (lex !stop)

| _ ->
let msg = sprintf "lex error at char \%d" pos

string.[pos] in↪→

failwith msg
in
lex 0

;;

Listing 68: Example Lexing

• Might benefit from regular expression matching

• Often toolchains for lexers use regular expressions

7.2 Parsing
• CFGs allow formal specification of syntax

• Derive strings from CFGs

• Parsers do the inverse: Given a string, see if it is allowed by the grammar

• Inverse problem is harder

• Top Down versus Bottom Up
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• Leftmost derivation versus Rightmost derivation

• Deterministic based on finite lookahead, or nondeterministic

• Recursive descent, Pushdown automata, Parsing tables

• LL(k): Left to right parsing, leftmost derivation, k-token look-ahead

• LALR(k): Left to right parsing, rightmost derivation, k-token lookahead

Note. Note that parsers cannot necessarily detect if all strings are valid in all grammars. Some
classes of grammars such as the LL(k) class can be fully decided by a recursive descent parser.
The LL(k) class excludes all ambiguous grammars and all left-recursive grammars.

Goal of parsers: Go from tokens to abstract syntax tree.

type expr =
| Add of expr * expr
| Mul of expr * expr
| Const of int

;;

Listing 69: Abstract Syntax Tree

Definition 29 (Recursive Descent Parser). A parser which handles parsing by using a series
of functions (typically one function per nonterminal symbol), which are possibly recursive.
These functions look for non terminal symbols and attempts to consume them according to
production rules.

Some properties of recursive descent parsers include:

• Top down parsing: constructs upper parts of Parse Tree before going lower.

• Non deterministic: involves backtracking

• Lookahead: looks forward 1 or more tokens in input to proceed

Consider the following CFG:
A→ A+A

A→M

M →M ∗M

M → N

N → number
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N → (A)

An example string can be 5 + 10 ∗ 4 + 7 ∗ (3 + 2). We can think of the following structure:

let parse_tokens tokens =

(* A parse_A: addition only *)
let rec parse_A toks =

...

(* M parse_M: multiplication *)
and parse_M toks =

...

(* N parse_N: self evaluating tokens like Int and Paren *)
and parse_N toks =

...
in

(* Main code for parse_tokens, end helper functions *)
let (expr, rest) = parse_A tokens in

...
;;

Listing 70: Parser for CFG

For example, the highest precedence level can be seen in the following:
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let rec parse_N toks =
match toks with

| [] ->
raise (ParseError {msg = "expected expression";

toks=toks})↪→

| Int n :: tail ->
(Const(n), tail)

| OParen :: tail ->
begin

let (expr, rest) = parse_A tail in
match rest with

| CParen :: tail -> (expr, tail)
| _ -> raise (ParseError {msg = "unclosed

paren"; toks=rest})↪→

end
| _ ->

raise (ParseError {msg="syntax err"; toks=toks})

Listing 71: Highest Precedence

and parse_M toks =
let (lexpr, rest) = parse_N toks in
match rest with
| Times :: tail ->

let (rexpr, rest) = parse_M tail in
(Mul(lexpr,rexpr), rest)

| _ -> (lexpr, rest)

Listing 72: Second Precedence

• Parsing is a search process in which each function tries to consume tokens with some failures
allowing backtracking

• Gets tricky to understand with parenthesis involved which circle back to the top of parsing
functions

• We can visualize this with a function call stack

• This is where debugging helps
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Note. We can trace functions using ##trace funcname;; in the OCaml REPL, shows calls
with params and return values.

7.3 Evaluation
Evaluation is actually quite simple, we just recurse down the tree and evaluate each subexpression.
For example,

let rec evaluate expr =
match expr with

| Const i -> i
| Add(lexpr, rexpr) ->

let lans = evaluate lexpr in
let rans = evaluate rexpr in

lans + rans
| Mul(lexpr, rexpr) ->

let lans = evaluate lexpr in
let rans = evaluate rexpr in

lans * rans
;;

Listing 73: Evaluation

Note. OCaml has a “Threading operator”. For example, if we have
let ans = f3 ( f2 ( f1 x )) in ... this can be rewritten as
let ans = x \|> f1 \|> f2 \|> f3

7.4 Advanced Processing
Consider the expression 10 - 2 - 3 when parsing. Note that if we used our previous parser, we
would evaluate 2− 3 first, and then 10− (x).

Definition 30 (Right and Left Associative). If we have an arbitrary expression a ∼ b ∼ c, the
operator ∼ is left associative if the expression is interpreted as (a ∼ b) ∼ c, and right
associative if it is interpreted as a ∼ (b ∼ c).

Note that addition and multiplication are both left and right associative. However, subtraction is
left associative, while our parser is right associative.
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(* Compare this with the parse_M recursive parser *)
let parse_Sub toks =

let (lexpr, rest) = parse_N toks in
let rec iter lexpr toks =

match toks with
| Minus :: rest ->

let (rexpr, rest) = parse_N rest in
iter (Sub(lexpr, rexpr)) rest

| _ -> (lexpr, toks)
in
iter lexpr rest

Listing 74: Left associative Parser Step

• Right associative parsers recurse deeply to the right to generate right hand expression

• Left associative iterates consuming subtraction operations in a (tail recursive) loop

• Left associative creates left-heavy tree by combining right and left expressions in a Sub and
then passing it forward in the iteration to be the left branch.

7.5 Advanced Lexing
• Often, lexing takes too much space

• Typically implemented as a lexing buffer or iterator

• Contains next() to see the next token.

• Lexer generators improve over handwritten lexers

• Lex is a classic tool to generate lexers: describes how characters translate to tokens

7.6 Advanced Parsing
• Yacc: Yet another compiler compiler

• Parser generator

• Input grammar / token types to Yacc to create a parser

• Most high level languages actually use a compiler on top of this to optimize and convert to
assembly.
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Lambda Calculus

Definition 31 (Untyped Lambda Calculus). Untyped Lambda calculus can be described by the
following CFG:

T → x (Variable name)

T → λx.T (Abstraction)

T → TT (Application)

Example (Lambda Terms).
λx.λy.xy

x y z (Same as (x y) z: left derivation)

Note. Application associates left. Though the CFG is ambiguous, we assume all applications
are Left Associative (see example above).

Definition 32 (Bound Variable). A variable x is bound when it occurs within the body of an
abstraction: eg

λx . . . x . . .

The abstraction is known as the binder of x.

Definition 33 (Free Variable). A variable that is not bound.

Definition 34 (Combinator). A Lambda term with no free variables.
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Example (Identity Function). The identity function is a combinator.

λx.x

Definition 35 (Alpha Conversion). Terms are equal up to renaming of bound variables. For
example,

λx.x ≡ λy.y

λx.λy.xy ≡ λq.λr.qr

This is known as Alpha-Conversion. Alpha conversion can be performed by:

• Traverse the AST tree of the lambda term CFG

• When encountering an abstract node, replace bound variable x with vi

• Each later appearance of x is substituted with fresh variable vi.

• Increment counter i.

Definition 36 (Beta Reduction). Beta reduction is as following: Apply the function by substi-
tuting bound variables with their parameter in the abstraction body.

(λx.x)y =⇒ y

Substitution:
(λx.t1)t2 =⇒ [x 7→ t2]t1

“substitute t2 for x in t1”

Definition 37 (Normal Form). When Beta reduction is no longer possible it is referred to as
Normal Form or Beta Normal Form.

Example.
λx.(x((λy.y)a)) =⇒ λx.(xa)

Example.
((λx.x)a)((λx.x)b) =⇒ ab

Definition 38 (Lazy Evaluation). Also known as Call by Name. Reduce Leftmost / Outermost
Application first. Abstractions that are not applied do not reduce. Substitute entire argument
first into abstractions.
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Definition 39 (Eager / Strict Evaluation). Also known as Call by Value. Evaluate argument to
applications first by reducing them to their normal form. Then perform substitution within
Abstractions. Abstractions that are not applied do not reduce. Reduce argument first before
subbing into abstractions.

Example (Lazy Evaluation).

(λz.z)((λy.y)x) =⇒ (λy.y)x

=⇒ x

Example (Eager Evaluation).

(λz.z)((λy.y)x) =⇒ (λz.z)x

=⇒ x

Theorem 8 (Church-Rossner). Reductions can be done in any order and will always reach the
same normal form. Normal forms are unique under full beta reduction. (Caveats include “up
to alpha conversion”, and “termination”).

Haskell uses lazy evaluation, while oCaml uses eager evaluation.

Definition 40 (Booleans). The definition of true in lambda calculus is

λx.λy.x

False is
λx.λy.y

Boolean values are if/then/else expressions. See following:

Example (If Statement).

if true then a else b =⇒ Truea b
=⇒ (λx.λy.x)ab

=⇒ a

Note we get b if False is placed instead of True.
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Definition 41 (Church Numeral). We define

0 = λf.λx.x

1 = λf.λx.fx

2 = λf.λx.f(fx)

n+ 1 = λf.λx.f(nfx)

Definition 42 (IsZero Function). This function tests if a value is 0 or not:

λz.((z(λy.False))True)

Definition 43 (Addition). This function adds two numbers:

λf.λx.(M f(N fx))

Definition 44 (Omega Combinator).

(λx.xx)(λx.xx)

Note that by attempting to reduce this, we encounter an infinite loop. Therefore, we can create
loops.

Definition 45 (Fixed Point or Y Combinator).

λf.(λx.f(λy.xxy))(λx.f(λy.xxy))

This allows the parameter f to continue replicating, which is known as “recursion”. This makes
Lambda Calculus Turing complete.

Note. Consider the following
(λx.λy.xy)y

Note that the OUTSIDE y is different from the INSIDE y. This is fixed through alpha
reduction.
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Operational Semantics

Formal Semantics

• Attempts to describe with some mathematical rigor the meaning of programming language
statements

• Comes with several flavors

• Useful to quickly describe to humans small features of languages

• Used by some proofs about properties of languages

Definition 46 (Operational Semantics). OpSem is one flavor of Formal Semantics, which relates
syntax of a language to behavior of an abstract machine. This describes meanings through
how things execute.

On the other hand, denotational semantics describes meanings through mathematical constructs,
and axiomatic semantics describes meanings through promises.

Definition 47 (Rules of Inference). The way we notate OpSem is the following:

H1 . . .Hn

C

This means “If the conditions H1 . . .Hn, or the hypotheses are true, then the condition C, or
the conclusion is true. If there are no hypotheses, then the conclusion is called an axiom and
automatically holds.

Example (Sum).
e1 =⇒ n1 e2 =⇒ n2 n3 is n1 + n2

e1 + e2 =⇒ n3
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Note. The statement n3 is n1+n2 is in the meta language, which is used to describe the target
language.

Example (Grammar Correspondence). The following Grammar:

E → n|E + E

can be seen as the following OpSem:

n =⇒ n

e1 =⇒ n1 e2 =⇒ n2 n3 is n1 + n2

e1 + e2 =⇒ n3

However, if we have variable names and identifiers, then we need some kind of environment A to
store variables and their values. For example, the following Grammar:

E → x|n|E + E|let x = E in E

If our E is x, then we have
A(x) = v

A;x =⇒ v

This states that “If in the environment, x = v , then we can arrive at the conclusion that x evaluates
to with that environment”.

Now suppose our E = let x = e1 in e2. Then we get

A; e1 =⇒ v1 A, x : v1; e2 =⇒ v2
A; let x = e1 in e2 =⇒ v2

Using these, we can derive proofs. For example, in this Grammar, if we want to prove that let x =
3 in x+ 4 is valid and evaluates to 7, we can do the following. We want to show

A; let x = 3 in x+ 4 =⇒ 7

We then get

A;3 =⇒ 3

A,x:3(x)=3
A,x:3;x =⇒ 3 A,x:3;4 =⇒ 4 7 is 3+4

A,x:3;x+4 =⇒ 7

A; let x = 3 in x+ 4 =⇒ 7

Definition 48 (Lambda Calculus in OpSem).

A;x =⇒ x

A; e =⇒ e′

A;λx.e =⇒ λx.e′

A; e1 =⇒ e′

A; (e1e2) =⇒ (e′e2)
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A; e2 =⇒ e′

A; (e1e2) =⇒ (e1e′)

A; e2 =⇒ e′ A, x : e′; e1 =⇒ e′′

A; ((λx.e1)e2) =⇒ e′′
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Rust

10.1 History
Best language best language.

• Started as a side project by Graydon Hoare while working at Mozilla

• Compiler initially written in OCaml, but became self-hosting

• Rust foundation was created and Mozilla took on the language

• Rust is the most loved programming language since 2016 according to Stack Overflow.

67



Stuff CHAPTER 10. RUST

use std::io;
// imports another "crate" (package) which is used to handle input

use std::str::FromStr;
// used to get at the i32::from_str() method to convert a string to
// int, one of two paths shown below the other being the obtuse
// instr.parse::<i32>()

const VERBOSE: bool = true;
// module level variables, all caps to avoid compiler warnings

// collatz function: notice parameter and return types are
// required. i32 is a 32-bit signed integer (e.g. positive or
// negative).
fn collatz(start: i32, maxsteps: i32) -> (i32, i32) {

let mut cur = start; // by default vars are immutable but
let mut step = 0; // 'mut' keyword adjusts this
if VERBOSE {

// no ( ) around conditions
println!("start: {start}"); // format substituion in prinln!() mcaro,

most of the time...↪→

println!("Step Current");
println!("{step:3} {cur:5}");

}
while cur != 1 && step < maxsteps {

step += 1;
if cur % 2 == 0 {

cur = cur / 2;
} else {

cur = cur * 3 + 1;
}
if VERBOSE {

// using 'if(VERBOSE)' will cause the compiler to complain
println!("{step:3} {cur:5}");

}
}
(cur, step) // last value sans as semicolon (;) is the function return value

// return (cur,step); // alternative explicit
return↪→

}

Listing 75: Collatz in Rust
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10.2 Stuff
• Comments: // comment

• Expressions: x + 1 , a && b

• Statements: println!("hi"); , statement lines end with semicolons

• Assignment via let x = expr; or let mut x = expr;

• Basic IO: println!() , io::stdin.read_line()

• Function declarations: fn funcname(param1: type1) -> RetType

• Conditionals: if cond { ... } else { ... } , also match conditions

• Loops: while cond { ... } and for iter {}

• Rust has tuples and variant types

• Great standard library

10.3 Philosophy
• Rust’s main directive: avoid memory bugs at all costs

• Provides great mechanisms for error handling but forces programs to contend with errors

• If failing, fail predictably

• While OCaml and Python are “memory safe”, they rely on using a garbage collector

• Rust provides memory safety without a garbage collector, which takes up less overhead

• Aims for zero cost abstractions

• Forces concepts such as ownership and lifetimes

Rust borrows a lot from many languages.

• It borrows syntax and generics from C++

• Defaults to immutable data with explicit labels for mutability, and has rich pattern matching
and variant types like OCaml

• Has useful array like data structures and all else prefers iterators, map, and reduce like python

• Makes use of code annotations and uses method dispatch like Java

• Has powerful macro creations such as Lisp
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10.4 Ownership of Memory
The main point of ownership is each value or memory block in Rust has an owner. There can
only be one owner at a time, and when the owner goes out of scope, the value will be dropped
(de-allocated).

For example, consider the following code.

fn print_str() {
let i = 5;
let s = "hello";
let h = String::new("there");

println!("{i} {h} {s}");
}

Listing 76: Rust Print Str

At the end of this, h, which is initially heap allocated, goes out of scope and will be dropped.
Meanwhile, in C we must add an additional free() at the end to make sure memory does not
leak. In Java, this pattern is safe as h will get garbage collected after it goes out of scope.

fn show_append() {
let s = String::from("two");
let t = String::from("three");
let st = append2(s, t); // append2() gains ownership of s,t
let ts = append2(t, s); // ownership lost and compiler forbids

reuse↪→

println!("{st}", st);
println!("{ts}", ts);

}

fn append2(x: String, y: String) -> String {
let mut z = String::new();
z.push_str(&x);
z.push_str(&y);
return z;

} // x,y dropped here and deallocated

Listing 77: Rust Bad 1

We see that this code breaks as we reuse a String, which can only have one owner. One fix is
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to clone the data. Some types implement Copy, which allows them to be easily copied from place
to place. However, String does not implement Copy, and so we cannot Copy it into append2.

let st = append2(s.clone(), t.clone());
let ts = append2(t.clone(), s.clone());

Listing 78: Rust Clone

Here both the strings are cloned, or their data contents are duplicated. However, this is ineffi-
cient. Rust also allows us to use references, which makes this efficient.

fn show_append() {
let s = String::from("two");
let t = String::from("three");
let st = append2(&s, &t);
let ts = append2(&t, &s);
println!("{st}", st);
println!("{ts}", ts);

}

fn append2(x: &String, y: &String) -> String {
let mut z = String::new();
z.push_str(&x);
z.push_str(&y);
return z;

}

Listing 79: An Append Function

Here, append2 “borrows” ownership of s and t, and then returns it at the end of the function.
We can also have mutable references.
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fn add_some(vec: &mut Vec<i32>) {
for i in 1..=3 {

vec.push(i);
}

}

fn main() {
let mut v = vec![10, 11];
add_some(&mut v);
add_some(&mut v);
println!("{:?}", v);

}

Listing 80: Mutable Ref

Programs can only have 1 mutable reference to an object at a time, OR as many immutable refs
as desired. Note in the previous example we used the Vec, which is Rust’s data structure similar
to ArrayList or python lists.

10.5 Slices
Rust has slices, which consist of a borrowed portion of a data structure with a length. For example
&[i32] is a slice of i32, which is equivalent to an array of i32s. This extends to strings, allowing

us to create string slices with &str , equivalent to a char array.
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fn main() {
let a = "hello world";
let b = String::from("hello world");

let mut c = "goodbye mut";
let mut d = String::from("goodbye mut");

for (i, ch) in c.chars().enumerate() {
println!("c[{i}]: {ch}");

}

for (i, ch) in d.chars().enumerate() {
println!("d[{i}]: {ch}");

}

let cs1: &str = &c[2..11];
let ds1: &str = &d[2..11];

let clen = c.len();
let dlen = d.len();

d.push_str(" again");
d.replace_range(0..0, "And ");

Listing 81: String and str

10.6 Struct and Enum
We can create a product type with

struct Omelet {
cook_time: f32,
is_cooked: bool,
ingredients: String,

}

Listing 82: Rust Struct

And we can create sum types with
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enum Breakfast {
None,
Meager(String),
Hearty(Omelet),
Misc(u32, String),

}

Listing 83: Rust Enum

We can match on enums, and use structs.

fn break_count(br: &Breakfast) -> u32 {
match br {

Breakfast::None => 0,
Breakfast::Misc(count, _) => *count,
_ => 1

}
}

fn main() {
let dog_br = Breakfast::Meager(String::from("kibble"));
let my_br = Breakfast::Hearty(Omelet { cook_time: 5.00,

is_cooked: true,
ingredients: String::from("egg") });

}

Listing 84: Match

10.7 Traits and Impl
• Rust is not object oriented, but it can feel that way

• Rust favors an approach similar to C++, define a struct and associated functions using impl

• Rust supports syntactic sugar around impl such as method invocation

• Several impl can exist for a struct
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struct Omelet {
...;

}

impl Omelet {
fn new(ingr: &str) -> Omelet {

...
}

fn cook(&mut self, time: f32) {
...

}
}

Listing 85: Rust Impl

fn main() {
let omlet: Omelet = Omelet::new("peppers");
omelet.cook(0.35);

}

Listing 86: Using Methods

Remark. A small aside: Rust’s “methods” are mostly just functions. They aren’t exactly
Proper Methods, as they don’t use subclassing and dynamic dispatch.

• Traits are a way to indicate that “data with operations XYZ can eb used here”

• For example, the ability to compare data, the ability to copy data
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struct Omelet {
...

}

trait Updateable {
fn update(&mut self);

}

impl Updateable for Omelet {
fn update(&mut self) {

self.cook(0.25);
}

}

Listing 87: Example Trait

• There are many existing traits, such as Iterator, Display

• One important trait is the Copy / Clone triat, seen before

impl Display for Omelet {
fn fmt(&self, f: &mut Formatter<'_>) -> Result {

write!(f, "Omelet (ingredients: {})", self.ingredients)
}

}

fn main() {
let om: Omelet = Omelet::new();
println!("{}", om); // Can now print due to Display

}

Listing 88: Display Trait
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impl Updateable for i32 {
fn update(&mut self) {

*self = *self + 1;
}

}

Listing 89: New Trait for Existing Type

We cannot implement existing traits for existing data type implementations. However, we can
create a wrapper type to implement the trait for us.

With traits, we can now specify them in generic code.

fn show_it<T: Display>(thing: T) {
println!("The thing is {}", thing);

}

fn show_it2(thing: impl Display) {
println!("The thing is {}", thing);

}

fn show_it3<T>(thing: T)
where T: Display
{

println!("The thing is {}", thing);
}

Listing 90: Generic with Trait

10.8 Lifetimes
What do we do in this scenario?
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fn longest(x: &str, y: &str) -> &str {
if x.len() > y.len() {

x
} else {

y
}

}

Listing 91: Rust Funky

We don’t know whether the reference being returned refers to an x or a y. We don’t know the
scopes of x and y, and whether the reference we return is valid. Therefore, we must annotate this
with explicit lifetimes.

• ’a is a lifetime

• x: &'a str indicates that x’s referenced data has a lifetime at least as long as ’a.

fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
if x.len() > y.len() {

x
} else {

y
}

}

Listing 92: Rust Funky Fix

The return value must live at least as long as the parameters.
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