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Chapter 1

Introduction to Counting and
Probability

1.1 Introduction
Office hours: MTH4107, Tuesday 3–4:30 (zoom), Friday 3–4:30 (in person)

1.2 Basic Counting

Definition 1 (Permutation). A permutation of an n-element set is a rearrangement of the
(distinct) elements in a specific order.

Definition 2 (k-Permutation). A k-permutation is an arrangement of k elements from the n
element set. The total number of k-permutations of an n-element set is

P (n, k) =
n!

(n− k)!

Example (Permutation). How many ways can we seat 10 people in a row?

P (10, 10) = 10!

Example (k-Permutation). How many ways can you create a committee with a president, vice
president, and secretary (exactly 1 role)?

P (10, 3) = 10 · 9 · 8
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CHAPTER 1. INTRODUCTION Basic Counting

Definition 3 (Combination). The total number of ways to create a k-size subset from an n-
element set is (

n

k

)
=

n!

k!(n− k)!
=

P (n, k)

k!

This is also known as a binomial coefficient.

Theorem 1 (Binomial). For any positive integer n,

(x+ y)
n
=

n∑
k=0

(
n

k

)
xkyn−k

Proof 1. To get the coefficient of xkyn−k, we must “choose” k x terms and n − k y terms.
We pick the number of ways to have an x term, giving

(
n
k

)
. However, note that we will just

pick the rest of the values for y, giving us
(
n−k
n−k

)
= 1. Therefore, coefficient of xkyn−k is(

n
k

)(
n−k
n−k

)
=
(
n
k

)
, and we see that the theorem is true.

Example (Binomial). There are 10 cows, 9 pigs, 8 horses.

• How many ways can we pick 5 animals?
Picking 5 animals gives

(
27
5

)
.

• How many ways can we pick 5 animals such that either we have 3 cows and 2 pigs or 2
cows and 3 pigs?
We can either count cows and pigs, or pigs and cows. So in total we have

(
10
3

)(
9
2

)
+
(
10
2

)(
9
3

)
Example (Permutation with Repetition). There are 10 kids and 4 types of candy. How many
ways can we distribute the candy so exactly 3 children get type 1, 2 get type 2, 5 get type 3?
The answer is

(
10
3

)(
7
2

)(
5
5

)
. We can think of it as permuting 3 As, 2 Bs, and 5 Cs. This is a

permutation with repetition.

Definition 4 (Permutation with repetition). Suppose there are k distinct objects and object i
occurs ai times. Assume a1 + a2 . . . ak = n. Then the total number of rearrangements of the
n objects is

n!

a1!a2! . . . ak!
=

(
n

a1a2 . . . ak

)

Theorem 2 (Multinomial: Binomial extension). For any positive integer n,
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Axioms of Probability CHAPTER 1. INTRODUCTION

(x1 + x2 + . . . xk)
n
=

∑
a1+a2+...ak

(
n

a1a2 . . . ak

)
xa1
1 xa2

2 . . . xak

k

Example (Multinomials). How many rearrangements of AAABBCC are there?
Solution is:

(
7

3,2,2

)
Example. What if the Bs must all be together, but none of the Cs can be together?

We can consider the “B”s as one object X. So we are trying to find arrangements of
“AAXCC”. We can first permute the “AAX”, and then insert the “C”s into the slots in between.
Therefore, it will be (

4

3, 1

)
·
(
5

2

)
=

4!

3!1!

(
5

2

)

1.3 Axioms of Probability

Remark. This is in Chapter 2.1 of the book.

Definition 5 (Sample Space). The set of all possible outcomes of an experiment is called the
sample space S.

Definition 6 (Event). A subset of S is an event. The null event, or empty set, denoted ∅ or
∅, is the set with no elements.

Definition 7 (Union, Intersection). For A,B ⊆ S, the union and intersection is defined
respectively as

• A ∪B = {x|x ∈ A or x ∈ B}

• A ∩B = {x|x ∈ A and x ∈ B}

Definition 8 (Disjoint). We say A,B are disjoint or mutually exclusive if A ∩B = ∅

Definition 9 (Complement). The complement of A is denoted Ac and is defined as

{x|x ∈ S, x /∈ A}
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CHAPTER 1. INTRODUCTION Axioms of Probability

Definition 10 (Bracket notation). We denote the set S = 1, 2, . . . n = [n].

Theorem 3 (Demorgan’s laws for Sets). For A1, A2, . . . An ⊆ S,

• (
n⋂

i=1

Ai

)c

=

n⋃
i=1

Ac
i

• (
n⋃

i=1

Ai

)c

=

n⋂
i=1

Ac
i

Proof 2. For number 2 (informal).
We prove by set inclusion. Let x ∈ (

⋃
Ai)

c. This means that x /∈ Ai. Therefore, x ∈ Ac
i

for all Ai. So x ∈
⋂
Ac

i . Therefore, (
⋃
Ai) ⊆

⋂
Ac

i .
Let x ∈

⋂
Ac

i . Then x ∈ Ac
i for all Ai. So x ̸∈ Ai. Therefore, x ̸∈

⋃
Ai. So x ∈ (

⋃
Ai)

c

Definition 11 (σ-algebra). Let F be a family of subsets of S (a subset of the powerset of S)
We say F is a σ-algebra on a set S if

• S ∈ F

• If A ∈ F , then Ac ∈ F (“closed under complements”)

• If A1, A2, . . . An ∈ F , then
n⋃

i=1

Ai ∈ F

This is the same as being (“closed under countable unions”)

Remark. By Demorgan’s Law, by points 2 and 3 we have closure under intersections as well.

Example (σ-algebra). If S = [6],

F = {∅, S, {1, 2, 3} , {4, 5, 6}}

We want the idea of union subsets to be in the family for probability, so we can state things like
“this event occurs or this event occurs”.

Definition 12 (Probability Axioms). A probability function P : F → R from a σ-algebra F on
a set S satisfies
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Axioms of Probability CHAPTER 1. INTRODUCTION

1. P (A) ∈ [0, 1] for all A ∈ F

2. P (S) = 1

3. If A1, A2, . . . are pairwise disjoint, then

P

⋃
i≥1

Ai

 =
∑
i≥1

P (Ai)

Note. Property 3 can be extended to more sets.
For 3 sets,

P (A ∪B ∪ C) = P (A) + P (B) + P (C)− P (A ∩B)− P (A ∩ C)− P (B ∩ C) + P (A ∩B ∩ C)

This is known as the principle of inclusion and exclusion. See below.

Example (Probability function). You flip a two sided coin, and the probability of heads (H) is
1
2 . Here, S = {H,T}, F = {∅, S, {H} , {T}} By axiom 2, P (S) = 1 = P ({H,T}). So we can
rewrite this as

P ({H} ∪ {T}) = P ({H}) + P ({T})

Since we know the probability of heads is 1
2 , then

1 = P ({H}) + P ({T}) = 1

2
+ P ({T})

So
P ({T}) = 1

2

Theorem 4 (Properties of the probability function). Let A,B be events from a sample space S.

1. P (Ac) = 1− P (A)

2. P (∅) = 0

3. P (A ∪B) = P (A) + P (B)− P (A ∩B)

4. if A ⊆ B, then P (A) ≤ P (B)

Proof 3. Proof for 2.

P (∅) = P (∅ ∪∅)

8
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By axiom 3, this can be split up.

P (∅) + P (∅) = 2P (∅)

Therefore,
P (∅) = 2 · P (∅)

and so P (∅) = 0.

Proof 4. Proof for 3. Let A\B denote the set of elements in A, but not in B. We can rewrite

P (A ∪B) = P (A\B ∪ (A ∩B) ∪B\A)

By axiom 3, since these three sets are disjoint, we can split it into

P (A\B) + P (A ∩B) + P (B\A)

We can now do a little trick:

P (A\B) + P (A ∩B) + P (B\A) + P (A ∩B)− P (A ∩B)

And now apply axiom 3 again, to get

P (A) + P (B)− P (A ∩B)

Theorem 5 (Inclusion-Exclusion). If A1, A2, . . . An ⊆ S, then

P

(⋃
i=1

Ai

)
=

n∑
i=1

P (Ai)−
∑
i<j

P (Ai ∩Aj) +
∑

i<j<k

P (Ai ∩Aj ∩Ak)

+ . . . (−1)n−1P

(⋂
i=1

Ai

)

Proof left as exercise, prove by induction.

Remark. Let I ⊆ [n], Denote AI =
⋂

i∈I Ai, with A∅ = S. Then

P

(
n⋃

i=1

Ai

)
= 1−

∑
I⊆[n]

(−1)
|I|
P (AI)
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Probability CHAPTER 1. INTRODUCTION

P

(
n⋂

i=1

Ac
i

)
=
∑
I⊆[n]

(−1)
|I|
P (AI)

This sum is iterating over the powerset of [n]. This is a nicer expression in terms of the
complement of our expression (see the 1−

∑
).

1.4 Probability
We often focus on teh case where the sample space S is finite. In the case that every element has
equal chance, we have for any event E ∈ S,

P (E) =
|E|
|S|

=
probability all ways event can occur

size of sample space

Example. A coin is flipped 10 times. What is the probability of getting exactly 3 heads? The
answer is (

10
3

)
210

Example. There are 10 cats, 7 dogs, and 5 mice. Four animals are chosen at once. What is
the probability we get at most one mouse. We want the cases where there are 0 mice or one
mouse.

The number of ways of getting 0 mice is
(
17
4

)
.

The number of ways of getting one mouse is
(
5
1

)(
17
3

)
The sample space size is

(
22
4

)
.

The probability is then (
17
4

)
+
(
5
1

)(
17
3

)(
22
4

)
Example. In some cases, S may be uncountable (no bisection from the naturals). For example,
S = [0, 1]. Consider E = [a, b] ⊆ [0, 1]. Then

P (E) =
b− a

1− 0
= b− a

Example. If n labeled balls are placed in n labeled boxes, what is the probability exactly one
box is empty?

The number of ways to choose which box is empty is n.
We then choose the number of ways to put two balls together, which is

(
n
2

)
.

Finally, we arrange those n− 1 balls in the boxes, which is (n− 1)!

10



CHAPTER 1. INTRODUCTION Probability

Therefore, the probability is
n
(
n
2

)
(n− 1)!

nn

Theorem 6. Let A1 ⊆ A2 ⊆ A3 ⊆ . . . be events in S. Then

P

( ∞⋃
i=1

Ai

)
= lim

n→∞
P (An)

Remark. An analog of this is
. . . A3 ⊆ A2 ⊆ A1

then

P

( ∞⋂
i=1

Ai

)
= lim

n→∞
P (An)

Proof 5. Let B1 = A1, B2 = A2 \A1, . . . Bi = Ai \Ai−1. Then

P

( ∞⋃
i=1

Ai

)
= P

( ∞⋃
i=1

Bi

)
=

∞∑
i=1

P (Bi)

= lim
n→∞

n∑
i=1

P (Bi) = lim
n→∞

P

(
n⋃

i=1

Bi

)
= lim

n→∞
P (An)

Note in this proof we constructed the Bi to be disjoint and apply axiom 3. We then took
the sum of P (Bi) and consolidated it as they are disjoint. Also note that the union of Ai

covers everything in the last Ai. If we union all the Bi, we get the same thing.

Example. At 11.59 balls #1 to 10 are put into a box. One ball is removed. At 11:59:30
. . . #11-20 . . . and 1 ball is removed. At 11:59:45 . . . #21-30 . . . 1 ball is removed. At 12:00
how many balls are in the box?

The answer is none. What???? This is actually fake news.
Anyways, let Ai be the event 1 ball survives step i. Then

P (A1) =
9

10

P (A2) =
9

10
· 18
19

P (A3) =
9

10
· 18
19

· 27
28

11



Probability CHAPTER 1. INTRODUCTION

A =

∞⋂
i=1

Ai

This is the event 1 ball survives until 12:00. Note that . . . A3 ⊆ A2 ⊆ A1. By the theorem, we
take the limit and see that it goes to 0.
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Chapter 2

Conditional Probability

2.1 Introduction to Conditional Probability

Definition 13 (Conditional Probability). Let A,B ∈ S, P (B) ̸= 0. The conditional probabil-
ity of A given B (“probability of A given B”) is

P (A|B) =
P (A ∩B)

P (B)

This is the probability of A, restricting S by knowing B.

Theorem 7 (Properties of conditional probability). 1. 0 ≤ P (A|B) ≤ 1

2. P (S|B) = 1

3. if A1, A2, . . . are pairwise disjoint, then

P

( ∞⋃
i=1

Ai

∣∣∣B) =

∞∑
i=1

P (Ai|B)

13



Introduction to Conditional Probability CHAPTER 2. CONDITIONAL PROBABILITY

Proof 6. Proof of (3).

P

( ∞⋃
i=1

Ai

∣∣∣B) =
P ((

⋃∞
i=1 Ai) ∩B)

P (B)

=
P (
⋃∞

i=1(Ai ∩B))

P (B)

=

∞∑
i=1

P (Ai ∩B)

P (B)

=

∞∑
i=1

P (Ai|B)

Example. A loaded 6-sided die has an odd number occurring twice as likely as even. Determine
the probability that the number is a perfect square, given the value is larger than 3.
Let A be the even of a perfect square ({1, 4}), and B be the event of getting larger than 3
({4, 5, 6}). Then A ∩B = {4}.
Let x be the probability of rolling an even number. We know then 2x+x+2x+x+2x+x = 1,
so x = 1

9 . So we have

P (A|B) =
P (A ∩B)

P (B)

=
P ({4})

P ({4, 5, 6})

=
1
9

1
9 + 2

9 + 1
9

=
1

4

Logically we we see that “given B” restricts the sample size to {4, 5, 6} which yields a 1
4 chance

to roll a 4.

Example. There are 7 black socks and 5 white socks. The socks are distinct, and we take two,
one at a time ,without replacement. What is P (both socks are black)?
Let Ai be the event that the first sock is black, and A2 be the event that the second sock is
black. We want P (A1 ∩A2) =

7
12 · 6

11 = P (A1) · P (A2|A1).

14



CHAPTER 2. CONDITIONAL PROBABILITY Introduction to Conditional Probability

Theorem 8 (Multiplication Rule). Let A1, A2, . . . An ⊆ S and P (A1 ∩A2 . . . An) > 0. Then

P (A1 ∩A2 ∩ . . . ∩An) = P (A1) · P (A2|A1) · P (A3|A1 ∩A2) . . . P (An|A1 ∩A2 ∩ . . . ∩An−1)

Definition 14 (Independent). We say A and B are independent if

P (A ∩B) = P (A)P (B)

Otherwise, the events are dependent. In particular, if P (B) ̸= 0, then if A, B are independent,
we see that

P (A|B) = P (A)

Or that the conditioning of B does not affect A.

Example. We draw 2 cards from a deck of cards without replacement. If A is the event of
drawing a spade on the first draw and B is the event of drawing a spade on the second draw,
are A and B independent?
P (A) = 1

4 However, P (B) = P (no spade, spade) + P (spade, spade) = 39
52 · 13

51 + 13
52 · 12

51 = 1
4 .

Then
P (A ∩B) = P (A)P (B|A) =

1

4
· 12
51

=
1

17

Therefore, since P (A ∩B) ̸= P (A)P (B), these events are dependent.

Example. Toss a coin 3 times. Let A be the event that a head occurs on toss 1 and 2, and let
B be the event that a tails occurs on toss 3.
Here A = {HHT,HHH}, B = {HHT,HTT, THT, TTT} Therefore, P (A) = 2

8 and P (B) =
4
8 . Note the intersection only contains one element, so P (A ∩B) = 1

8 . We see

P (A ∩B) = P (A)P (B)

so these two events are independent. Observe that even though P (A ∩B) ̸= ∅, independence
still holds!

Definition 15 (Independent (2)). Events A1, A2, . . . Ak are independent if

P

(⋂
i∈J

Ai

)
=
∏
i∈J

P (Ai)

where J is any subset of {1, 2, . . . k}.
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Bayes Formula CHAPTER 2. CONDITIONAL PROBABILITY

Definition 16 (Pairwise Independence). Events A1, . . . Ak are pairwise independent if

P (Ai ∩Aj) = P (Ai)P (Aj)

for all 1 ≤ i ̸= j ≤ k.
Note that if we know events are independent, then we know that they are pairwise independent.

Example (Pairwise independent). Consider 4 labeled balls, pick one. Let A1 = {1, 2}, A2 =
{1, 3}, A3 = {1, 4}. Then we see that P (A1 ∩ A2) = P ({1}) = 1

4 = P (A1)P (A2). Note that
this is true for any pair. Therefore, these events are pairwise independent. However, note that
P (A1 ∩A2 ∩A3) ̸= P (A1)P (A2)P (A3), so these events are not independent.

Remark. While independence implies pairwise independence, note that pairwise independence
does not imply independence in general.

Theorem 9 (Compl Independence). Let A,B be events. Then A,B are independent if and only
if A and Bc are independent.

Proof 7. (One direction). If A,B are independent, we know that P (A ∩B) = P (A)P (B).

P (A ∩Bc) = P (A)− P (A ∩B)

= P (A)− P (A)P (B)

= P (A) (1− P (B))

= P (A)P (Bc)

Example. Alice and Bob can solve 75% and 70% of the problems in a book, respectively.
Assume the events are independent. If a problem is selected at random from the book, what
is the probability it will be solved?
Let A = Alice solves the problem and B = Bob solves the problem. We want the value
P (A∪B). By inclusion exclusion, P (A∪B) = P (A)+P (B)−P (A∩B), and by independence
this is equal to P (A) + P (B)− P (A)P (B) = 0.925.

2.2 Bayes Formula

Definition 17 (Law of total probability). Let A,B1, B2, . . . Bn be events such that Bi ∩Bj = ∅

16



CHAPTER 2. CONDITIONAL PROBABILITY Bayes Formula

for 1 ≤ i ̸= j ≤ n, and
n⋃

i=1

Bi = S

In essence, the B events partition the sample space and do not intersect.
We can see that now we can separate the probabilities of A into pieces from the “cuts” of

B.

P (A) = P

(
n⋃

i=1

(A ∩Bi)

)
= P (A ∩B1) + P (A ∩B2) + · · ·+ P (A ∩Bn)

By the previous section on conditioning, note that this is the same as

P (A|B1)P (B1) + P (A|B2)P (B2) + . . . P (A|Bn)P (Bn)

Theorem 10 (Bayes Formula). Let B1, . . . Bn be a partition of S (Bi ∩ Bj = ∅,
⋃

Bi = S).
Then

P (Bi|A) =
P (Bi ∩A)

P (A)

=
P (A|Bi)P (Bi)

k∑
n=1

P (A|Bk)P (Bk)

So given P (A|Bk), we can find P (Bi|A).

Example (Bayes). Alice is the main goalie of a soccer team, and Bob is a back-up. If Alice
plays, there is a 75% chance the team wins. If Bob plays there is a 40% chance the team wins.
The team doctor says there is a 70% chance Alice can play. If you read in the newspaper that
the team won, what is the probability Bob played?

Let A be the even that the team wins, B1 be the event that Alice plays, and B2 be the
event that Bob plays. Then note that

P (B2|A) =
P (B2 ∩A)

P (A)
=

P (A|B2) · P (B2)

P (B1)P (A|B1) + P (B2)P (A|B2)

We know P (A|B1) = 0.75, P (A|B2) = 0.4, P (B1) = 0.7, P (B2) = 1− 0.7 = 0.3. Plugging all
of this in, we get 0.186.

Example. A multiple choice question has m choices. Alice knows the answer with probability
p. Otherwise she guesses with probability 1 − p. What is the probability Alice knew the
answer, given that she answered correctly?

So we have that A is the event Alice answers correctly, B1 the event that she knows the

17



Bayes Formula CHAPTER 2. CONDITIONAL PROBABILITY

answer, and B2 is the event that she guesses. We want to find

P (B1|A) =
P (B1 ∩A)

P (A)
=

P (A|B1) · P (B1)

P (B1)P (A|B1) + P (B2)P (A|B2)

We know P (A|B1) = 1, P (B1) = p, P (B2) = 1− p, P (A|B2) =
1
m . So then we get that

P (B1|A) =
1 · p

1 · p+ 1
m · (1− p)

=
mp

1 + (m− 1)p

Example. A rare disease affects 1% of a population. There is a test to check. If you have
the disease, the probability that you test negative is 1%. The probability of a false positive
is 2%. Given a positive test, what is the probability that you have the disease? What is the
probability of a positive test?

We want P (+), and we know P (+|Dc) = 0.02, P (+c|D) = 0.01, and P (D) = 0.01.
Therefore, we also know that P (+|D) = 0.99, and P (Dc) = 0.99.

Note that

P (+) = P (+|D) · P (D) + P (+|Dc) · P (Dc)

= 0.01 · 0.99 + 0.99 · 0.02
= 0.0297

Next, we want P (D|+). We can then expand this to get

P (D|+) =
P (D ∩+)

P (+)
=

P (+|D)P (D)

P (+)
=

0.01 · 0.99
0.0297

≈ 0.33

So even if you test positive, the test is somewhat counter intuitive to being accurate. The
rareness of the disease is the “stranger force”.

Example. In tennis, “deuce” is a score of 40–40. To win the game, one person must score 2
points in a row. If each player scores 1, it resets to deuce.

Let B1 be the event that she wins the next two points, B2 be the event that she loses the
next two points, and B3 be the event that Alice has one win and one loss in the next two
points. Then

P (Win) = P (Win|B1)P (B1) + P (Win|B2)P (B2) + P (Win|B3)P (B3)

= 1 · 0.62 + 0 · 0.42 + P (Win) · (0.6 · 0.4 + 0.4 · 0.6)

Solving for P (Win), we get 9
13 .
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Chapter 3

Discrete Random Variables

3.1 Random Variables

Definition 18 (Random Variable). A real valued function on a sample space S is a random
variable

X : S → R

Example (Socks). There are 100 red, 100 blue, 100 white socks. Three are chosen at once. Let
X be the total red socks. So X takes on 0, 1, 2, 3.

Definition 19 (Discrete Random Variable). If x takes on a finite or countable number of values,
we say X is a discrete random variable.

Definition 20 (Probability Mass Function). For a discrete random variable X, the probability
mass function (or “distribution function” or PMF) of X is p : R → R (may be f : R → R)
such that

p(x) = probability X takes on x = P (X = x)

In the discrete case, we have p(xi) ≥ 0 for i = 1, 2, . . . and p(x) = 0 for all other numbers. It
follows then that

∞∑
i=1

p(xi) = 1

Example. Toss a coin twice, let X be the number of tails.

p(0) = p({HH}) = 1

4

19
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p(1) = p({HT, TH}) = 1

2

p(2) = p({TT}) = 1

4

1

4
+

1

2
+

1

4
= 1

Example. Let S = [5]. Assume 1 value is chosen with equal chance. Let

X = X(i) = (i− 2)2 − 1

We want to find the PMF, meaning that we should see what values X is taking on. For
example,

i = 1, 3 =⇒ X = 0

i = 2 =⇒ X = −1

i = 4 =⇒ X = 3

i = 5 =⇒ X = 8

We can see that

p(x) =


1
5 if x = −1
2
5 if x = 0
1
5 if x = 3
1
5 if x = 8

−4 −2 2 4 6 8

0.1

0.2

0.3

0.4

0.5

•

•

• •

Figure 3.1: PMF
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Definition 21 (Cumulative Distribution Function). A cumulative distribution function (cdf) of a
random variable X is Fx(x) = P (X ≤ x)

Example. From the previous PMF, we can see now that

Fx(x) =



0 if −∞ < x < −1
1
5 if − 1 ≤ x < 0
3
5 if 0 ≤ x < 3
4
5 if 3 ≤ x < 8

1 if 8 ≤ x < ∞

−2 2 4 6 8

0.5

1

◦

• ◦

• ◦

• ◦

•

Figure 3.2: CDF

Example. Let the CDF of a discrete RV be

Fx(x) =



0 x < 1
3
10 1 ≤ x < 2
6
10 2 ≤ x < 3
8
10 3 ≤ x < 5

1 x ≥ 5

We can then do
P (2 < X ≤ 3) = FX(3)− FX(2) =

8

10
− 6

10
=

2

10

P (3 ≤ X ≤ 5) = FX(5)− FX(3) + P (X = 3)

21
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Note that in the discrete case, P (X = 3) = FX(3)− FX(2). Therefore,

P (3 ≤ X ≤ 5) = FX(5)− FX(2) = 1− 6

10
=

4

10

Theorem 11 (CDF). If a discrete random variable takes on x1 < x2 < x3 < · · · < xn, we
can find the probability of each value through P (X = x1) = FX(x1) and P (X = xi) =
FX(xi)− FX(xi−1) for i = 2, . . . n. Moreover,

(a) P (a < x ≤ b) = FX(b)− FX(a)

(b) P (a < x < b) = FX(b)− FX(a)− P (X = b)

(c) P (a ≤ X ≤ b) left as exercise.

(d) P (a ≤ X < b) left as exercise.

Remark. You can actually think of the PDF as a combination of scaled dirac delta functions.
Then, if we integrate it, we get the Heaviside function giving us this nice step.

Theorem 12 (CDF). A function FX(x) is a CDF if and only if

1. 0 ≤ FX(x) ≤ 1 for all x that X takes on.

2. lim
x→∞

FX(x) = 1

3. lim
x→−∞

FX(x) = 0

4. FX(x) is non-decreasing

5. FX(x) is right continuous for all x ∈ R. In other words,

lim
x→x+

0

FX(x) = FX(x0)

Example (Bernoulli Random Variable). A Bernoulli random variable is the following

X =

{
1 success
0 fail

where the probability of success is p and fail is 1− p.
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Example (Binomial Random Variable). The Binomial random variable is denoted as

X ∼ Bin(n, p)

where a Bernoulli experiment is done n times, each with probability of success p. If X is the
number of successes, then X takes on 0, 1, 2, . . . n. Here, the probability mass function will
satisfy

p(i) = P (X = i) =

(
n

i

)
pi(1− p)n−i

Observe that
n∑

i=0

p(i) =

n∑
i=0

(
n

i

)
pi(1− p)n−i = (p+ (1− p))n = 1

This satisfies the condition of a PMF.
Also, we see that the CDF is

FX(i) = P (X ≤ i)

=

i∑
j=1

(
i

j

)
pj(i− p)i−j

3.2 Expectation

Definition 22 (Expected Value). If X is a discrete random variable with PMF p(x), then the
expected value of X is

E(X) =
∑
x

xp(x)

=
∑
x

xP (X = x)

provided the sum
∑
x
|x|p(x) does not diverge.

The expected value of a function x(X) is

E(g(X)) =
∑
x

g(x)p(x)

=
∑
x

g(x)P (X = x)
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provided that the sum
∑
x
|g(x)|p(x) does not diverge.

Remark. If g(x) = xn, then
E(g(x)) = E(xn)

is the nth moment of X.

Example. A coin is tossed until you see a tails. On toss i, you win (−2)i−1 dollars. What is
the expected winnings?

Let X be the possible winnings. Then X takes on 1,−2, 4,−8, . . .. The probability we end
on round i is

(
1
2

)i. So

E(X) = 1

(
1

2

)
− 2

(
1

4

)
+ 4

(
1

8

)
− 8

(
1

16

)
. . .

This is equal to 1
2 − 1

2 + 1
2 − 1

2 . . ., which diverges.

Example. Same problem as before, but we win i dollars on round i. Then we have

E(X) =

∞∑
i=0

i

(
1

2

)i

We denote S = E(X). Then

1

2
S = 0 + 1

(
1

2

)2

+ 2

(
1

2

)3

+ 3 ·
(
1

2

)4

. . .

S − 1

2
S =

1

2
+

1

2

2

+
1

2

3

+
1

2

4

+ . . .

By the geometric formula for sums, we can evaluate this, giving us

1

2
S =

1

1− 1
2

− 1

So therefore,
S = 2

Definition 23 (Variance). The variance of a random variable X is

Var (X) = E
(
(X − E(X))2

)
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Theorem 13 (Expectation Properties). For a random variable X, we have

1. E(aX + b) = aE(X) + b for a, b ∈ R.

2. For g1(x), g2(x), E(g1(x) + g2(x)) = E(g1(x)) + E(g2(x)) (generalizes to n functions).

3. Var(X) = E(X2)− (E(X))2

4. Var(aX + b) = a2 Var(X) (note that Var(b) = 0).

Proof 8. (Proof of 1).

E(aX + b) =
∑
x

(ax+ b)p(x)

= a
∑
x

xp(x) + b
∑
x

p(x)

= aE(x) + b · 1
= aE(x) + b

(Proof of 2).

E(g1(x) + g2(x)) =
∑
x

(g1(x) + g2(x)) p(x)

=
∑
x

g1(x)p(x) +
∑
x

g2(x)p(x)

= E(g1(x)) + E(g2(x))

(Proof of 3).

Var(X) = E
(
(X − E(X))2

)
= E

(
X2 + 2XE(X) + E(X)2

)
Note here that E(X) is constant. Therefore, we get X2 + KX + K2. Therefore, when we
distribute the expected value, it only applies to X2 and X.

Var(X) = E(X2)− 2E(X)E(X) + (E(X))2

= E(X2)− E(X)2
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(Proof of 4).

Var(aX + b) = E((aX + b)2)− E(aX + b)2

= E(a2X2 + 2abX + b2)− (aE(X) + b)2

= E(a2X2 + 2abX + b2)− a2E(X)2 − 2abE(X)− b2

= a2E(X2) + 2abE(X)− a2E(X)2 − 2abE(X)

= a2E(X2)− a2E(X)2

= a2
(
E(X2)− E(X)2

)
= a2 (VarX)

Example. Consider rolling a 4-sided die once. Let X be the value the die takes on. Find V (X).

E(X) = 1 · 1
4
+ 2 · 1

4
+ 3 · 1

4
+ 4 · 1

4
=

5

2

E(X2) = 1 · 1
4
+ 4 · 1

4
+ 9 · 1

4
+ 16 · 1

4
=

30

4

VarX = E(X2)− (E(X))2 =
30

4
− (

5

2
)2 =

5

4

Alternatively, compute X − E(X) for X = 1, 2, 3, 4. Then VarX = E
(
(X − E(X))2

)
.

Note. By definition VarX = E
(
(X − E(X))2

)
. The intuition is the expected value of the

squares of the difference. We are trying to find the “average” of this difference. If the variance
is large, then we see that the values are farther away from the average. If it is large, then
likely so was X − E(X), so the values X takes on are far away from E(X).

3.3 Discrete Random Variable Examples

Definition 24 (Uniform Discrete Random Variable). A random variable X has a discrete uniform
distribution with parameter n if and only if the PMF is

p(x) =

{
1
n x = 1, 2, . . . n

0 otherwise

and the uniform discrete random variable has the following properties:
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(a)
E(X) =

n+ 1

2

(b)

Var(X) =
(n+ 1)(n− 1)

12

Proof 9. We see that

E(X) =
1

n

n∑
i=1

i

=
1

n

n(n+ 1)

2

=
n+ 1

2

We can then find the variance:

Var(X) = E(X2)− E(X)2

=

n∑
i=1

i2

n
−
(
n+ 1

2

)2

=
1

n

n(n+ 1)(2n+ 1)

6
−
(
n+ 1

2

)2

=
(n+ 1)(n− 1)

12

Definition 25 (Bernoulli Distribution). We write X ∼ Bernoulli(p), p is the probability of success
if

X =

{
1 success with prob p

0 failure with prob 1− p

The Bernoulli distribution satisfies the following properties:

(a)
E(X) = p

(b)
Var(X) = p(1− p)
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Proof 10. We see that the PMF is p(1) = p, p(0) = 1− p. Therefore,

E(X) = 0(1− p) + 1(p) = p

Var(X) = E(X2)− (E(X))2 = p− p2 = p(1− p)

Definition 26 (Geometric Definition). We write X ∼ Geom(p). This is seen as the probability
of the first success after x trials of Bernoulli events with probability p for a success). Therefore,
the probability mass function for x = 0, 1, . . . is

p(x) = (1− p)x−1p

Observe
∞∑
x=1

p(1− p)x−1 = p

∞∑
x=1

(1− p)x−1

By the Geometric Series, we see that this is the same as

p · 1

1− (1− p)
= 1

Therefore, this is a valid PMF. Note the following properties:

(a)
E(X) =

1

p

(b)
V (X) =

1− p

p2

Proof 11.

E(X) =

∞∑
x=1

xp(1− p)x−1

= p

∞∑
x=1

x(1− p)x−1

Note here that the inside looks like a derivative of (1 − p)x. Let q = 1 − p. Therefore (needs
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some rigor but this is not analysis class)

= p
d

dq

∞∑
x=0

qx

= p
d

dq

(
1

1− q

)
= p

1

(1− q)2

= p

(
1

p2

)
=

1

p

Next, we see that

E(X2) =
∑
x

x2p(x)

=

∞∑
x=1

x2pqx−1

=

∞∑
x=1

(x(x− 1) + x)qx−1p

=

∞∑
x=1

(x(x− 1))qx−1p+

∞∑
x=1

xqx−1p

= pq

∞∑
x=1

(x(x− 1))qx−2 + E(X)

= pq

∞∑
x=1

(x(x− 1))qx−2 +
1

p

= pq

(
d2

dq2

( ∞∑
x=0

qx

))
+

1

p

= pq

(
d2

dq2
1

1− q

)
+

1

p

= pq

(
2

(1− q)3

)
+

1

p

=
2− p

p2
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Therefore,
V (X) = E(X2)− E(X)2 =

2− p

p2
− 1

p2
=

1− p

p2

Definition 27 (Binomial Distribution). We write X ∼ Binomial(n, p), where X is the number
of successes, and the probability of success is p for each of n independent trials. The PMF is

p(x) =

(
n

k

)
px(1− p)n−x

where x = 0, 1, . . . n.
The Binomial Distribution has the following properties:

(a)
E(X) = np

(b)
V (X) = np(1− p)

Proof 12.

E(X) =

n∑
x=0

x

(
n

k

)
px(1− p)n−x

=

n∑
x=1

x
n!

x!(n− x)!
px(1− p)n−x

= np

n∑
x=1

(n− 1)!

(x− 1)!(n− x)!
px−1(1− p)n−x

= np

n∑
x=1

(
n− 1

x− 1

)
px−1(1− p)(n−1)−(x−1)

= np(p+ (1− p))n−1

= np
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We also see that

E(X2) =
n∑

x=0

x2

(
n

k

)
px(1− p)n−x

=

n∑
x=0

x · n!

(x− 1)!(n− x)!
px(1− p)n−x

= np

n∑
x=1

x · (n− 1)!

(x− 1)!(n− x)!
px−1(1− p)n−x

= np

(
n∑

x=1

(x− 1) ·
(
n− 1

x− 1

)
px−1(1− p)n−x +

n∑
x=1

(
n− 1

x− 1

)
px−1(1− p)n−x

)
= np

(
E(Binomial(n− 1, p)) + ((1− p) + p)n−1

)
= np ((n− 1)p+ 1)

Therefore,

V (X) = E(X2)− (E(X))2 = np(1− p)

Definition 28 (Hypergeometric Distribution). We write X ∼ Hypergeometric(n,m, k), with
PMF

p(x) =

(
m
x

)(
n−m
k−x

)(
n
k

)
We see this as n total elements, with m successes. Then p(x) measures the probability of
drawing exactly x successes without replacement if we draw from the n k times, where x =
0 . . . k. Think of the PMF as stating “out of all k draws from n, we pick the ones where x of
them are from m and the other k − x are from the failures”.

The Hypergeometric Distribution has the following properties:

(a)

E(X) =
km

n

(b)

V (X) =
km(n−m)(n− k)

n2(n− 1)
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Lemma 1. We introduce the following lemma to prove the expected value.

k∑
i=0

(
a

i

)(
b

k − i

)
=

(
a+ b

k

)

Proof 13. We see that

E(X) =

k∑
x=0

x ·
(
m
x

)(
n−m
k−x

)(
n
k

)
= m

k∑
x=0

(m− 1)!

(x− 1)!(m− x)!
·
(
n−m
k−x

)(
n
k

)
=

m(
n
k

) k∑
x=0

(
m− 1

x− 1

)(
n−m

k − x

)
=

m(
n
k

) · (n− 1

k − 1

)
=

km

n

Proof for variance left as exercise (it is much more algebra intensive).

Remark. Let p, q be the proportions of successes and failures, respectively (p = m
n ). Then the

PMF is

p(x) =

(
np

x

)(
nq

k − x

)
=

(
k

x

)
p

(
p− 1

n

)(
p− 2

n

)
. . .

(
p− x− 1

n

)
q

(
q − 1

n

)
. . .

(
q − k − x− 1

n

)

and in the limit, we have

lim
n→∞

p(x) =

(
k

x

)
pxqk−x

which is the binomial distribution. This is stating that for large n, when drawing without
replacement, we can approximate this by drawing without replacement (or doing each trial
independently, as in the binomial distribution).
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Definition 29 (Negative Binomial). We write X ∼ NegativeBinomial(r, p), with PMF

p(x) =

(
x− 1

r − 1

)
pr(1− p)x−r

For x = r, r + 1, . . .
This is seen as the probability of getting r-th success after x trials (probability p of success).

Note the following properties proceed from the binomial:

(a)
E(X) =

r

p

(b)

V (X) = r

(
1− p

p2

)
If the PMF is p(k) where k is the number of failures, we have

(a)
E(X) =

r

p
− r

(b)

V (X) = r

(
1− p

p2

)

Example. If a person is exposed to a disease, 30% show symptoms. What is the probability
that the 100-th (x = 100) person exposed is the 7-th (r = 7) person to show symptoms?

Let k = x− r = number of failures. Then

p(k) =

(
k + r − 1

r − 1

)
(1− p)kpr

Note. We have(
k + r − 1

r − 1

)
=

(k + r − 1)(k + r − 2) . . . (r)

k!
=

(−1)k(−r)(−r − 1)(−r − 2) . . . (−r − k + 1)

k!

This is equal to

(−1)k
(
−r

k

)
This is where the phrase “negative binomial” comes from.
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Proof 14. We prove the negative binomial is a PMF, and omit expected value and variance.
We have that

p−r = (1− q)−r

=

∞∑
k=0

(
−r

k

)
(−q)k(1)−r−k

=

∞∑
k=0

qk(−1)k
(
−r

k

)

=

∞∑
k=0

qk
(
k + r − 1

r − 1

)

so therefore,
∞∑
k=0

p(k) =

∞∑
k=0

(
k + r − 1

r − 1

)
(1− p)kpr

= p−rpr

= 1

Consider a time period of 1 week, and X is the number of car accidents. We break up the time
interval into n subintervals such that at most 1 accident occurs per subinterval. In any subinterval,
there is a probability p of exactly 1 accident happening. If each subinterval is independent, this is
a binomial distribution.

We expect as the number of subintervals n gets larger (smaller time frame), p gets smaller. We
assume here np = λ is constant.

Observe that the binomial random variable had

p(x) =

(
n

x

)
px(1− p)n−x

Substituting in p = λ
n , we get

p(x) =

(
n

x

)(
λ

n

)x(
1− λ

n

)n−x

=
(n)(n− 1) . . . (n− x+ 1)

x!

(
λ

n

)x(
1− λ

n

)n−x

=
1
(
1− 1

n

)
. . .
(
1− x−1

n

)
x!

λx

((
1− λ

n

)−n
λ

)−λ((
1− λ

n

)−x
)
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Therefore, as we take lim
n→∞

p(x), we get the Poisson distribution. We remember that

lim
n→∞

(
1− 1

n

)−n

= e

Therefore, we get

lim
n→∞

p(x) =
1

x!
λxe−λ

Definition 30 (Poisson Distribution). We say that X ∼ Poisson(λ) has PMF

p(x) =
λx

x!
e−λ

for x = 0, 1, . . .

(a)
E(X) = λ

(b)
V (X) = λ

Proof 15. Note that

E(X) =
∑
x

xp(x)

=

∞∑
x=0

x · λ
x

x!
e−λ

=

∞∑
x=1

λx

(x− 1)!
e−λ

= λe−λ
∞∑
x=1

λx−1

(x− 1)!

= λe−λeλ

= λ
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We see that

E(X2) =
∞∑
x=0

x2λ
x

x!
e−λ

= λe−λ
∞∑
x=1

x
λx−1

(x− 1)!

Let x = i+ 1. Then

λe−λ
∞∑
x=1

x
λx−1

(x− 1)!
= λe−λ

∞∑
i=0

(i+ 1)
λi

i!

= λe−λ

( ∞∑
i=1

λi

(i− 1)!
+

∞∑
i=0

λi

i!

)
= λe−λ

(
λeλ + eλ

)
= λ2 + λ

Therefore,
V (X) = E(X2)− (E(X))2 = (λ2 + λ)− λ2 = λ
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Chapter 4

Continuous Random Variables

4.1 Continuous Random Variables

Definition 31 (Continuous Random Variable). (Informal). A continuous random variable X :
S → R is a function that takes on an uncountable many elements (no bijection to the natural
numbers). Alternatively, X is continuous if there is a non negative function f(x) such that
f(x) is defined for all R and

P (X ∈ B) =

∫
B

f(x) dx

The function f(x) is called the probability density function (PDF) or “distribution func-
tion”.

Theorem 14 (Properties of PDF). Here are some properties of the PDF.

1.
f(x) ≥ 0

2. ∫ ∞

−∞
f(x) dx = 1

3.
P (a ≤ X ≤ b) =

∫ b

a

f(x) dx

4.
P (X = a) =

∫ a

a

f(x) dx = 0

5.
P (A ≤ X ≤ b) = P (a < X < b)
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Example. Let X have a PDF

f(x) =

{
ke−3x x > 0

0 x ≤ 0

Find k and determine P (0.5 ≤ X ≤ 1).
Since a PDF must sum to 1, we have

1 =

∫ ∞

−∞
f(x) dx

=

∫ ∞

0

ke−3x dx

= k lim
t→∞

∫ t

0

e−3x dx

= k lim
t→∞

e−3x

3

∣∣∣t
0

=
k

3

Therefore, k is 3. Then

P (0.5 ≤ X ≤ 1) =

∫ 1

0.5

3e−3x dx

= −e−3 + e−1.5

≈ 0.173

Definition 32 (CDF). If X is a continuous random variable with pdf f(t), then the cumulative
distribution function or CDF is

FX(x) = F (x) = P (X ≤ x) =

∫ x

−∞
f(t) dt

CDF properties in the discrete case follow similarly. For example,

1. F (∞) = 1

2. F (−∞) = 0

Theorem 15 (FTC). If f(x), F (x) are the PDF and CDF of a continuous random variable X,
then P (a ≤ X ≤ b) = F (b)− F (a). Moreover,

f(x) =
d

dx
F (x)
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Given the CDF, we can take a derivative to get the PDF, assuming derivative exists.

Example. Find the CDF from the last example

f(x) =

{
3e−3x x > 0

0 x ≤ 0

We get

F (x) =

∫ x

−∞
f(t) dt

=

∫ x

0

3e−3t dt

= e3t
∣∣∣x
0

= 1− e−3x

So

F (x) =

{
1− e−3x x > 0

0 x ≤ 0

Note by the theorem that P (0.5 ≤ X ≤ 1) = F (1)− F (0.5) = −e−3 + e−1.5.

Definition 33 (Expected Value). If X is a continuous random variable with PDF f(x), then
the expected value is

E(X) =

∫ ∞

−∞
xf(x) dx

Definition 34 (Variance). If X is a continuous random variable with PDF f(x), then the
variance is

V (X) =

∫ ∞

−∞
(x− E(X))2f(x) dx

However, we will often use the form

V (X) = E(X2)− (E(X))2

=

∫ ∞

−∞
x2f(x) dx−

(∫ ∞

−∞
xf(x) dx

)2

Note the properties for the discrete case follow in the same manner.

(a) E(aX + b) = aE(X) + b
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(b) V (aX + b) = a2V (X)

(c) E(g(x)) =

∫ ∞

−∞
g(x)f(x) dx

Example. If X has PDF

f(x) =

{
e−x x > 0

0 x ≤ 0

find E(e
3x
4 ).

E(e
3x
4 ) =

∫ ∞

−∞
g(x)f(x) dx

=

∫ ∞

0

e
3x
4 e−x dx

=

∫ ∞

0

e−
x
4 dx

= 4

Example. If X has PDF

f(x) =

{
4

1+x2 0 < x < 1

0 otherwise

find V (X).

E(X) =

∫ 1

0

x
4

1 + x2
dx

=
1

2
4

∫ 2

1

1

u
du = 2 ln 2
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E(X2) =

∫ 1

0

x2

(
4

1 + x2

)
dx

= 4

∫ 1

0

x2

1 + x2
dx

= 4

∫ 1

0

x2 + 1− 1

1 + x2
dx

= 4

∫ 1

0

1− 1

1 + x2
dx

= 4 (x− arctanx)
∣∣∣1
0

= 4− π

Therefore,
V (X) = E(X2)− (E(X))2 = (4− π)− (2 ln 2)2

4.2 Continuous Random Variable Examples

Definition 35 (Uniform). Random variable X has a uniform distribution, denoted X ∼ U(α, β),
over an interval (α, β) if the PMF is

f(x;α, β) =


1

β − α
α < x < β

0 otherwise

Moreover, we have the CDF for U(α, β) is

F (x) =


0 x ≤ α
x−α
β−α α < x < β

1 x ≥ β

Properties:

(a)

E(X) =
α+ β

2

(b)

V (X) =
(β − α)2

12
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Proof 16. We have

E(X) =

∫ ∞

−∞
xf(x) dx

=

∫ β

α

x

β − α
dx

=
α+ β

2

Then

E(X2) =

∫ ∞

−∞
x2f(x) dx

=

∫ β

α

x2

β − α
dx

=
α2 + 2αβ + β2

3

Therefore,

V (X) = E(X2)− (E(X))2 =
(β − α)2

12

Definition 36 (Normal Distribution). A random variable X has a normal distribution denoted
X ∼ N(µ, σ) if the PMF is

f(x;µ, σ) =
1

σ
√
2π

exp

(
−1

2

(
x− µ

σ

)2
)

Properties:

(a)
E(X) = µ

(b)
V (X) = σ2

The standard deviation here is σ. We can verify that f(x) satisfies the definition of a PMF.
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Proof 17. (Verification of PMF). Let k =

∫ ∞

−∞
f(x) dx, and z =

x− µ

σ
. Then note that

dz =
1

σ
dx

We have

k =

∫ ∞

−∞

1√
2π

e−
1
2 z

2

dz

k
√
2π =

∫ ∞

−∞
e−

1
2 z

2

dz

2πk2 =

∫ ∞

−∞
e−

1
2w

2

dw

∫ ∞

−∞
e−

1
2 z

2

dz

=

∫ ∞

−∞

∫ ∞

−∞
e−

w2+z2

2 dw dz

Using polar coordinates with w = r cos θ and z = r sin θ, we see the bounds are equivalent to
0 ≤ θ ≤ 2π and 0 < r < ∞. Therefore, we can rewrite this integral as

k22π =

∫ 2π

0

∫ ∞

0

e−
r2

2 r dr dθ =

∫ 2π

0

dθ

∫ ∞

0

e−
r2

2 r dr

= 2π lim
t→∞

∫ t

0

e−
r2

2 r dr

= 2π lim
t→∞

−
(
e−

r2

2

) ∣∣∣t
0

= 2π

Since f(x) ≥ 0, we find k = 1, which verifies that f is in fact a PMF.

Definition 37 (Standard Normal Distribution). For X ∼ N(0, 1), we call this the standard
normal distribution.

Proof 18. (Properties of Standard Normal Distribution). Here, the PMF and CDF are

f(x) =
1√
2π

e−
x2

2

FX(x)−
∫ x

−∞

1√
2π

e−
t2

2 dt

43



Continuous Random Variable Examples CHAPTER 4. CONTINUOUS RANDOM VARIABLES

One can show that
∫∞
0

f(x) dx exists, so E(X) =
∫∞
−∞ xf(x) dx = 0 since xf(x) is odd. Then

E(X2) =

∫ ∞

−∞

1√
2π

x2e−
x2

2 dx

= 2

∫ ∞

0

1√
2π

x2e−
x2

2

Let u = x, du = dx, dv = xe−
x2

2 , v = −e−
x2

2 . Then if we use integration by parts, we get

E(X2) =
2√
2π

(
uv −

∫ ∞

0

v du

)
=

2√
2π

(
lim
t→∞

−xe−
x2

2

∣∣∣t
0
+

∫ ∞

0

e−
x2

2 dx

)
=

2√
2π

∫ ∞

0

e−
x2

2 dx

=
1√
2π

∫ ∞

−∞
e−

x2

2 dx

=

∫ ∞

−∞
f(x) dx

= 1

Therefore,
V (X) = E(X2)− E(X)2 = 1− 0 = 1

Proof 19. (Properties for Normal Distribution).
Recall that for Z ∼ N(0, 1), E(Z) = 0 and V (Z) = 1. Thus, for z = x−µ

σ , we have
X = µ+ σZ.

Therefore, by linearity, we have

E(X) = E(µ+ σZ)

= E(µ) + σE(Z)

= µ
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By our variance rules, we have

V (X) = V (µ+ σZ)

= V (µ) + V (σZ)

= 0 + σ2 · 1
= σ2

Theorem 16 (Z-score). If X ∼ N(µ, σ), then the random variable z = x−µ
σ has the standard

normal distribution.

Proof 20. Use a u-substitution with z = x−µ
σ .

Note. Since the PMF of the standard normal distribution is symmetric about 0, the CDF can
be written as

FX(x) =
1

2
+

∫ t

0

1√
2π

e−
t2

2

Example. The height of students obey a normal distribution with µ = 67 inches, and σ = 3
inches. What percent of students have heights between 64 and 70 inches?

Let z = x−µ
σ . Then z follows N(0, 1). So,

P (64 < x < 70) = P (−1 < z < 1)

= F (1)− F (−1)

≈ 0.6826

Remark. The CDF for X ∼ N(0, 1) is often denoted Φ(x). From the above example, we
generally have that for X ∼ N(µ, σ),

P (a < X < b) = P

(
a− µ

σ
< z <

b− µ

σ

)
= Φ

(
b− µ

σ

)
− Φ

(
a− µ

σ

)

Also, for Z ∼ N(0, 1), Φ(−z) = 1− Φ(z).
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Example. Find the probabilty that X ∼ N(0, 1) takes on a value less than −0.88. We can find
this by

Φ(−0.88) =

∫ −0.88

−∞

1√
2π

e−
x2

2

= 1−
∫ ∞

−0.88

1√
2π

e−
x2

2

= 1−
∫ 0.88

−∞

1√
2π

e−
x2

2

= 1− Φ(0.88)

≈ 0.1894

Example. Radiation exposure in an area takes on a normal distribution with mean µ = 4.35
mrem and standard deviation σ = 0.59 mrem. What is the probability that a person is exposed
to more than 5.2 mrem?

Converting to the standard normal distribution, we get

z =
x− µ

σ
= 1.44 =⇒ 1− Φ(1.44) = 0.0749

Definition 38 (Gamma Function). The gamma function is given by

Γ(α) =

∫ ∞

0

tα−1e−t dt

Theorem 17 (Properties of the Gamma Function).

1. For α > 0, Γ(α) = (α − 1)Γ(α − 1), and in particular if α is a positive integer, Γ(α) =
(α− 1)!.

2. We have Γ( 12 ) =
√
π.

Proof 21. (1). Use integration of parts with u = e−t, dv = tα−1. Then

Γ(α) = (α− 1)Γ(α− 1) = (α− 1)(α− 2)Γ(α− 2)

= (α− 1) . . . (2)Γ(1)
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Note that
Γ(1) =

∫ ∞

0

e−t dt = 1

Therefore, Γ(α) = (α− 1)!, α ∈ Z+.

Proof 22. (2). We do a u substitution with t = u2 and dt = 2u du.

Γ

(
1

2

)
=

∫ ∞

0

t−
1
2 e−t dt

=

∫ ∞

0

u−1e−u2

2u du

=

∫ ∞

0

2e−u2

du

=
√
π

(See the normal distribution PMF verification proof for details on the final step).

Definition 39 (Gamma Distribution). A random variable X has a gamma distribution, denoted
X ∼ Γ(α, β) = Gamma(α, β), if the PMF is

f(x;α, β) =
βαxα−1e−βx

Γ(α)

for x, α, β > 0, where Γ(α) is the gamma function, α is the shape parameter, and β is the rate
parameter.

Properties:

(a)
E(X) =

α

β

(b)
V (X) =

α

β2
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Proof 23.

E(X) =
1

Γ(α)

∫ ∞

0

xβαxα−1e−βx dx

=
1

Γ(α)

∫ ∞

0

βαxαe−βx dx

Now let y = βx and dy = β dx.

1

Γ(α)

∫ ∞

0

βαxαe−βx dx =
1

Γ(α)

∫ ∞

0

yαe−y 1

β
dy

Note that inside the integral, we have Γ(α+ 1). Therefore,

1

β

Γ(α+ 1)

Γ(α)
=

αΓ(α)

βΓ(α)
=

α

β

For E(X2), we can similarly proceed.

E(X2) =
1

Γ(α)

∫ ∞

0

βαxα+1e−βx dx

=
1

Γ(α)

1

β

∫ ∞

0

(βx)α+1e−βx dx

=
1

Γ(α)

1

β2

∫ ∞

0

yα+1e−y dy

=
Γ(α+ 2)

Γ(α) · β2

=
(α+ 1) · (α) · Γ(α)

Γ(α)β2

=
α2 + α

β2

Therefore, the variance is

V (X) = E(X2)− E(X)2 =
α2 + α

β2
− α2

β2
=

α

β2

Example (Intuition: Relating Poisson with Gamma).
Recall the probability of exactly x successes for X ∼ Poisson was p(x) = λx

x! e
−λ, where we
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“approximated” with λ = np was a constant. This is seen as “rate per unit time”. Now for
example, suppose

X = # pulses in a 30 second interval

Assume pulses occur on average 6 per minute. We see that

λ = 6 · 1
2
= expect 3 pulses per 30 second interval

Generally, if x successes occur with average rate δ per unit time, the probability of x
successes in an interval of t units with λ = δt is

p(x) =
1

x!
(δt)xe−δt

How does this relate to the Gamma distribution? Define the random variable X = wait time
for α successes. We have that

CDF = F (x) = P (wait time for α successes ≤ X)

= 1− P (fewer than α successes in [0, x])

= 1− P (exactly 0 successes or exactly 1 success . . . or α− 1 successes)

= 1−
α−1∑
k=0

Poisson with parameter λx

We can differentiate F (x) to get the PDF, so we get

f(x) = prob of α successes in time interval x = F ′(x)

=
λe−λx(λx)α−1

(α− 1)!

And this is the PDF of the Gamma distribution with λ = β.

Definition 40 (Exponential Distribution). If Random variable X has PMF

f(x;β) = βe−βx

This is known as the exponential distribution, which is a special case of the Gamma distribu-
tion, where α = 1, or X ∼ Γ(1, β).

Example. Suppose the total cars exceeding the speed limit in half an hour is a random variable
with a Poisson distribution with λ = 8.4. What is the probability the wait time is at most 5
minutes between cars exceeding the speed limit?
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Here we define t = 1 which is one unit of 30 minutes. Then

8.4 = λ = δt = δ · 1 = δ

We want P (wait time at most 5 min) =

P (wait time at most 5 min) =
∫ 1

6

0

8.4e−8.4 dx

≈ 0.75

Remark. It follows by the earlier results, if Y is an exponential distribution,

E(Y ) =
1

β

and
V (Y ) =

1

β2

Definition 41 (Chi Squared). If a random variable X has PMF

f(x; ν) =
1

2
ν
2 Γ
(
ν
2

)x ν−2
2 e−

x
2

This is a special case of the Gamma distribution, where X ∼ Γ
(
ν
2 ,

1
2

)
.

Remark. This distribution is used a lot in sampling theory.

Remark. It follows from earlier results that

E(X) = ν

V (X) = 2ν

Definition 42 (Cauchy Distribution). If a random variable X has PMF

f(x; θ) =
1

π

(
1

(x− θ)2 + 1

)
then it follows the Cauchy distribution.

Properties:
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(a)
E(X) = undefined

(b)
V (X) = undefined

This can be thought of as similar to a “slowly decreasing” normal distribution. For θ = 0, we can
verify that it is a PMF.

1

π

∫ ∞

−∞

1

x2 + 1
dx =

1

π

(
lim
t→∞

arctan t− lim
s→−∞

arctan s

)
=

1

π

(π
2
−
(
−π

2

))
= 1

We have

E(X) =
1

π

∫ ∞

−∞

x

1 + x2
dx

=
1

π

(∫ 0

−∞

x

1 + x2
dx+

∫ ∞

0

x

1 + x2
dx

)
=

2

π

∫ ∞

0

x

1 + x2
dx

=
1

π
lim
t→∞

ln (1 + u)
∣∣∣t
0

This diverges, so the expected value is undefined. Similarly, the variance of the Cauchy distribution
is undefined as well.

Definition 43 (Beta Distribution). We say X ∼ Beta(α, β) if X is a random variable with PMF

f(x;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1

for 0 < x < 1 and α, β > 0.
Properties:

(a)
E(X) =

α

α+ β

(b)

V (X) =
αβ

(α+ β)2(α+ β + 1)
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Proof 24. (Verification of PMF).
Using Γ(α) =

∫∞
0

tα−1e−t dt with α = a+ 1, β = b+ 1, we have

Γ(a+ 1)Γ(b+ 1) = Γ(α)Γ(β)

=

∫ ∞

0

xα−1e−x dx

∫ ∞

0

yβ−1e−y dy

=

∫ ∞

0

∫ ∞

0

xaybe−x−y dx dy

Now we can do a substitution with x = uv and y = (1−u)v. Therefore, u = x
x+y and v = y

1−u .
Note that as x → ∞, u → 1. This equals

Γ(a+ 1)Γ(b+ 1) =

∫ ∞

0

∫ 1

0

ua(1− u)bva+b+1e−v du dv

= Γ(a+ b+ 2)

∫ 1

0

ua(1− u)b du

Therefore, we see that since this is equal to Γ(a+ 1)Γ(b+ 1), we get

1 =
Γ(a+ b+ 2)

Γ(a+ 1)Γ(b+ 1)

∫ 1

0

ua(1− u)b du

=
Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0

xα−1(1− x)β−1 dx

=

∫ 1

0

f(x;α, β) dx

So we see that f is a PMF.

Proof 25. (Properties).
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E(X) =
Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0

xα(1− x)β−1 dx

=

(
Γ(α+ β)

Γ(α)Γ(β)

)
Γ(α+ 1)Γ(β)

Γ(α+ 1 + β)

Γ(α+ 1 + β)

Γ(α+ 1)Γ(β)

∫ 1

0

xα(1− x)β−1 dx

=
Γ(α+ β)

Γ(α)Γ(β)
· Γ(α+ 1)Γ(β)

Γ(α+ 1 + β)

=
Γ(α+ β)αΓ(α)

Γ(α)(α+ β)Γ(α+ β)

=
α

α+ β

For E(X)2, a similar argument can be made.

E(X2) =
(α+ 1)α

(α+ β + 1)(α+ β)

V (X) = E(X2)− (E(X))2

=
αβ

(α+ β)2(α+ β + 1)
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Chapter 5

Transforming Random Variables

Given X, how can we find the distribution of Y = g(X)? In the discrete case, as long as g(x) is
one to one, we can simply substitute it into the random variable function.

Example. If X ∼ Binomial(n, p), find the PMF of Y = 2X + 3.
We have fX(x) =

(
n
x

)
px(1− p)n−x for x = 0, 1, . . . , n. Therefore,

P (Y = y) = P (2X + 3 = y) = P

(
X =

y − 3

2

)
If y−3

2 ̸∈ {0, 1, . . . , n}, then P (Y = y) = 0. Therefore, the PMF of Y is

fY (y) =

{(
n

(y−3)/2

)
p

y−3
2 (1− p)n−

y−3
2 y = 3, 5, . . . , 2n+ 3

0 otherwise

5.1 Transforming Continuous Random Variables

Theorem 18. Let fX(x) be the PMF of a continuous random variable. Suppose y = g(x) is
strictly increasing or decreasing. Then the PMF of Y = g(X) is

FY (y) =

{
fX(g−1(y))

∣∣ d
dy

(
g−1(y)

) ∣∣ y = g(x) for some x

0 otherwise

provided that d
dy

(
g−1(y)

)
exists.

54



CHAPTER 5. TRANSFORMS Transforming Continuous Random Variables

Proof 26. Assume y = g(x) is increasing. Then

P (a < Y < b) = P
(
g−1(a) < X < g−1(b)

)
=

∫ g−1(b)

g−1(a)

fX(x) dx

=

∫ b

a

fX(g−1(y))
d

dy

(
g−1(y)

)
dy

Therefore, we see that fX(g−1(y)) d
dy

(
g−1(y)

)
is the PMF of Y .

Example. Let the PMF of X be

fX(x) =

{
e−x x > 0

0 x ≤ 0

We want to find the PMF of Y =
√
X, which we note is strictly increasing. Then

y =
√
x

x = y2

d

dy

(
g−1(y)

)
= 2y

fX(g−1(y)) = fX(y2) = e−y2

Therefore, the PMF fY (y) is

fY (y) =

{
2ye−y2

y > 0

0 y ≤ 0

Example. Let X ∼ Uniform(0, 4). Find the PMF of Y =
√
X.

We have

fX(x) =

{
1
4 0 ≤ x ≤ 4

0 otherwise

55



Transforming Continuous Random Variables CHAPTER 5. TRANSFORMS

Therefore,

FY (y) = P (Y ≤ y)

= P (
√
X ≤ y)

= P (X ≤ y2)

=

∫ y2

−∞
fX(x) dx

=

∫ y2

−∞

1

4
dx

=
1

4
y2

Differentiating this gives us the PMF

fY (y) =

{
y
2 0 ≤ y ≤ 2

0 otherwise

Example. Let X ∼ N(0, 1) be the standard normal distribution. Find the PMF of Y = X2.
Using the CDF of Y , we have

FY (y) = P (Y ≤ y)

= P (X2 ≤ y)

= P (|X| ≤ √
y)

= P (−√
y ≤ X ≤ √

y)

= FX(
√
y)− FX(−√

y)

Differentiating gives us the PMF as

fY (y) = fX(
√
y)

(
1

2
y−

1
2

)
− fX(−√

y)

(
−1

2
y−

1
2

)
=

{
1√
2π

e−
y
2 y−

1
2 y > 0

0 otherwise
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Chapter 6

Joint Distributions

Consider two random variables over a joint sample space. For random variables X,Y , we are
interested in P (X = x, Y = y).

6.1 Discrete Joint Distributions

Definition 44 (Joint Probability Distribution). If X and Y are discrete random variables, the
function

f(x, y) = P (X = x, Y = y) = P (X = x and Y = y)

for each pair of values (x, y) that X, Y take on is the joint probability distribution of X and
Y , called the joint PDF.

Theorem 19 (Properties of the Joint PMF).

1. f(x, y) ≥ 0

2.
∑
x

∑
y
f(x, y) = 1

Definition 45 (Joint Cumulative Distribution). If X,Y are discrete random variables, the func-
tion

F (X,Y ) = P (X ≤ x, Y ≤ y) =
∑
s≤x

∑
t≤y

f(s, t)

where f(s, t) is the PMF at (s, t) is the joint cumulative distribution, or joint CDF.

Theorem 20 (Properties of the Joint CDF).

1. F (−∞,−∞) = 0
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2. F (∞,∞) = 1

3. If a < b and c < d, then F (a, c) ≤ F (b, d)

6.2 Continuous Joint Distributions

Definition 46 (Joint Probability Distribution). If X and Y are random variables and f(x, y) is
defined over R2, then f(x, y) is the joint probability density function (joint PDF) of X and Y
if

P (X,Y ) =

∫∫
R

f(x, y) dA

where R is a region on the xy-plane.

Theorem 21 (Properties of the Joint PDF).

1. f(x, y) ≥ 0 for all x, y ∈ R.

2.
∫∞
−∞

∫∞
−∞ f(x, y) dy dx = 1

Definition 47 (Joint Cumulative Distribution). If X and Y are continuous random variables then

F (x, y) = P (X ≤ x, Y ≤ y)

=

∫ y

−∞

∫ x

−∞
f(s, t) ds dt

where f(s, t) is the joint PDF of X and Y , is the joint cumulative distribution function, or
joint CDF of X and Y .

Similarly to the one variable case, we have

f(x, y) =
∂2

∂x∂y
F (x, y)

= Fyx

=
∂2

∂x∂y
F (x, y)

= Fxy

provided the partials exist and are continuous.
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Example. Let

f(x, y) =

{
x+ y 0 < x < 1, 0 < y < 1

0 otherwise

be the joint PDF of X and Y . Find the joint CDF.
Clearly, if x, y ≤ 0, then F (x, y) = 0. For 0 < x < 1, 0 < y < 1, we have

F (x, y) =

∫ y

0

∫ x

0

(s+ t) ds dt

=
1

2
xy(x+ y)

If x ≥ 1, 0 < y < 1, we have

F (x, y) = P (X ≤ x, Y ≤ y)

=

∫ y

0

∫ 1

0

(s+ t) ds dt

=
1

2
(y)(y + 1)

Similarly, if y ≥ 1, 0 < x < 1, we have F (x, y) = 1
2 (x)(x + 1), and for x, y ≥ 1, we have

F (x, y) = 1. So,

F (x, y) =



0 x, y ≤ 0
1
2xy(x+ y) 0 < x < 1, 0 < y < 1
1
2y(y + 1) x ≥ 1, 0 < y < 1
1
2x(x+ 1) y ≥ 1, 0 < x < 1

1 x, y ≥ 1

Example. Given the joint PDF

f(x) =

{
x2+y
60 0 ≤ x ≤ 3, 0 ≤ y ≤ 4

0 otherwise

find P
(
|X − 1| ≤ 1

2

)
.
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We have

P

(
|X − 1| ≤ 1

2

)
= P

(
1

2
≤ X ≤ 3

2

)
=

∫ 4

0

∫ 3
2

1
2

x2 + y

60
dx dy

=
37

180

Example. Given the joint CDF

F (x, y) =

{
(1− e−x) (1− e−y) x, y > 0

0 otherwise

Find P (1 < X < 3, 1 < Y < 2).
First, we need to find f(x, y). Taking the partial derivatives, we have Fxy(x, y) = e−(x+y),

so

f(x, y) =

{
e−(x+y) x, y ≥ 0

0 otherwise

which means that

P (1 < X < 3, 1 < Y < 2) =

∫ 2

1

∫ 3

1

e−(x+y) dx dy ≈ 0.074

Example. In a study, the hours X spent using their phones, and hours Y spent on the job is
approximated by the joint PDF

f(x, y) = xye−(x+y)

for x, y ≥ 0. What is the probability that a person spends at least twice as much time on their
phone than doing their job?

We want P (X ≥ 2Y ), which is given by

P (X ≥ 2Y ) =

∫ x=∞

x=0

∫ y= x
2

y=0

xye−(x+y) dy dx

This is the region R where x ≥ 2y.

6.3 Conditional Distributions and Independence

Definition 48 (Discrete Marginal Distribution). If f(x, y) is the joint PMF of a discrete random
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variable, then the function gX(x) =
∑
y
f(x, y) for each x that X takes on is the marginal

distribution of X.

Definition 49 (Continuous Marginal Distribution). If f(x, y) is the joint PDF of a continuous
random variable, then the function gX(x) =

∫∞
−∞ f(x, y) dy for −∞ < x < ∞ is the marginal

distribution of X.

Definition 50 (Conditional Distribution). If f(x, y) is the joint PMF or PDF of a random variable
X and Y and gY (y) is the marginal distribution of Y , then

f(x|y) = f(x, y)

gY (y)

with gY (y) ̸= 0 for each x in X is the conditional distribution or conditional PMF of X,
given Y = y.

Similarly, the conditional CDF of X given Y = y is

F (x|y) = P (X ≤ x|Y = y) =
∑
a≤x

f(a|y)

Example. Let the joint PDF of X and Y be

f(x, y) =

{
2
3 (x+ 2y) 0 < x, y < 1

0 otherwise

We want to find P
(
X ≤ 1

2

∣∣∣Y = 1
2

)
.

Therefore, we want to find ∫ 1
2

0

f

(
x|y =

1

2

)
dx

First, the marginal PDF is

gY (y) =

∫ ∞

−∞
f(x, y) dx

=

∫ 1

0

f(x, y) dx

=
1

3
(1 + 4y)
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Then we see that

f(x|y) = f(x, y)

gY (y)

=
2
3 (x+ 2y)
1
3 (1 + 4y)

f

(
x
∣∣∣1
2

)
=

2x+ 2

3

P

(
X ≤ 1

2

∣∣∣Y =
1

2

)
=

∫ 1
2

0

2x+ 2

3
dx

=
5

12

Definition 51 (Independence). Let gi(x) be the marginal distribution of a random variable Xi.
We say that the random variables X1, . . . Xn are independent if and only if for all (x1, . . . xn)
that X1, . . . Xn takes on,we have the joint PMF or PDF is

f(x1, . . . xn) = g1(x1)g2(x2) . . . gn(xn)

Example. Given the joint PDF of X,Y as

f(x, y) =

{
12xy(1− y) 0 < x, y < 1

0 otherwise

We have gX(x) =
∫ 1

0
f(x, y) dy = 2x and gY (y) =

∫ 1

0
f(x, y) dx = 6(1− y)y.

Note that gX(x)gY (y) = f(x, y), so X and Y are independent.

Example. Let X ∼ Binom(n, p) and Y ∼ Binom(m, p). Assume X and Y are independent.
Define Z = X + Y , so Z ∼ Binom(n+m, p) (why?). Determine the PMF of X|Z.

62



CHAPTER 6. JOINT DISTRIBUTIONS Conditional Distributions and Independence

First we note that

P (X + Y = k) =
∞∑
i=0

P (X = i, Y = k − i)

=

k∑
i=0

P (X = i)P (Y = k − i)

=
∑

product of PMFs

=
∑(

n+m

k

)
pk(1− p)n+m−k

Now

f(x|z) = f(x, z)

gZ(z)

=
P (X = x, Z = x+ y)

gZ(z)

=
P (X = x, Y = z − x)

gZ(z)

=
P (X = x)P (Y = z − x)

gZ(z)

=
gX(x)gY (y)

gZ(z)

=

(
n
k

)
px(1− p)n−x

(
m

z−x

)
pz−x(1− p)m−z+x(

n+m
z

)
pz(1− p)n+m−z

=

(
n
x

)(
m

z−x

)(
n+m

z

)
We see that this is the Hypergeometric distribution. Thus, X|Z is the Hypergeometric distri-
bution while X ∼ Binom(n, p), so X,Z are NOT independent. This is because our conditional
distribution X|Z = f(x,z)

gZ(z) should be equal to gX(x) if they are independent.

Theorem 22 (Sum of Variables: Convolution). Let X,Y be independent random variables with
PMF or PDF fX(x), fY (y). Define Z = X + Y . Then (for the continuous case)

fZ(z) =

∫ ∞

−∞
fX(x)fY (z − x) dx

which is called the convolution of the two functions.
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Example. Let X,Y be independent random variables and assume that

fX(t) = fY (t) =

{
e−t t > 0

0 otherwise

Then the PDF of Z = X + Y is

fZ(z) =

∫ ∞

−∞
fX(x)fY (z − x) dx

=

∫ z

0

e−xe−(z−x) dx

= ze−z

Note that this distribution is NOT exponential. In general, X+Y may NOT stay as the same
distribution as X and Y .

6.4 Transforming Joint Random Variables
Recall that if fX(x) is the PDF for X and y = g(x), then the PDF for Y = g(x) is

fY (y) = fX(g−1(y))
d

dy
g−1(y)

Now given fX,Y (x, y) and u = h1(x, y), v = h2(x, y). What is the joint PDF of U and V ?

Theorem 23 (Transforming Joint Distributions). If random variables X,Y and U = h1(X,Y ),
V = h2(X,Y ), and fX,Y (x, y) is the joint PDF of X and Y , then the joint PDF of U and V is

fU,V (u, v) = fX,Y (x(u, v), y(u, v)) |J(u, v)|

Where J(u, v) = det

[
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]
is the Jacobian.

Remark. One can show that with U = h1(X,Y ), V = h2(X,Y ), we have

J−1 =
1

det

[
∂h1

∂x
∂h1

∂y
∂h2

∂x
∂h2

∂y

]

though this isn’t always useful as we may still need to solve for x and y in terms of u and v.

64
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Example. Let the joint PDF of X and Y be

f(x, y) =

{
e−(x+y) x, y > 0

0 otherwise

Find the joint PDF of U = X + Y , V = X
X+Y .

We have that u = x+ y, v = x
x+y . We see that v = x

u , so x = uv. We also have u = uv+ y,
so y = u− uv.

This allows us to calculate

J(u, v) =

∣∣∣∣ ∂x∂u
∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣
=

∣∣∣∣ v u
1− v −u

∣∣∣∣
= −u

So the joint PDF is

fU,V (u, v) = fX,Y (x(u, v), y(u, v))|J(u, v)|
= fX,Y (uv, u− uv) · u
= e−(uv+u−uv) · u

=

{
ue−u u > 0, 0 < v < 1

0 otherwise

Example. Let X ∼ N(µ1, σ
2
1), Y ∼ N(µ2, σ

2
2), and assume X,Y are independent. Find the

joint PDF of U = X + Y , V = X − Y .
Being independent , we have fX,Y = fX(x) · fY (y). Note that x = u+v

2 , y = u−v
2 , and so

J =

∣∣∣∣ 12 1
2

1
2 − 1

2

∣∣∣∣ = −1

2
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Therefore, we get

fU,V (u, v) = fX,Y

(
u+ v

2
,
u− v

2

)
· 1
2

=
1

2
fX

(
u+ v

2

)
fY

(
u− v

2

)
=

1

4πσ1σ2
exp

((
u+v
2 − µ1

)2
2σ2

1

+

(
u−v
2 − µ2

)2
2σ2

2

)

Example. Let X,Y have joint PDF

f(x, y) =

{
1
96xy 0 < x < 4, 1 < y < 5

0 otherwise

Find the PDF of U = X + 2Y .
Let u = x + 2y and v = x. Then x = v and y = u−v

2 . Note that this solves a different
problem! We need to do further manipulation afterwards.

We have J(u, v) =

∣∣∣∣0 1
1
2 − 1

2

∣∣∣∣ = − 1
2 . Our new bounds are 0 < v < 4 and 1 < u−v

2 < 5, so
v + 2 < u < v + 10.

The joint PDF is

fU,V (u, v) = fX,Y

(
v,

u− v

2

)
·
∣∣∣− 1

2

∣∣∣
=

{
1
96v

(
u−v
2

) (
1
2

)
0 < v < 4, v + 2 < u < v + 10

0 otherwise

However, we want the distribution of just U , which requires us to find the marginal distribution
gU (u). We find that

gU (u) =


∫ v=u−2

v=0
fU,V (u, v) dv 2 < u < 6∫ v=4

v=0
fU,V (u, v) dv 6 < u < 10∫ v=4

v=u−10
fU,V (u, v) dv 10 < u < 14

Draw the picture! The distribution forms a parallelogram on the u, v space.
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We can also try to do this by using the CDF.

FU (u) = P (X + 2Y ≤ u)

=

∫∫
x+2y≤u

f(x, y) dA

For 2 < u < 6, we have

P (X + 2Y ≤ u) =

∫ x=u−2

x=0

∫ y=− x
2+

u
2

y=1

f(x, y) dy dx

as the CDF for 2 < u < 6. Then to get the PDF, we must differentiate. This yields (u−2)2(u+4)
2304

for 2 < u < 6, which equals the integral we got before.

6.5 Expected Value and Variance of Joint Variables

Theorem 24 (Expected Value). Let X,Y be random variables. If f(x, y) is the joint PMF or
PDF, then

• In the discrete case,
E(g(X,Y )) =

∑
x

∑
y

g(x, y)f(x, y)

• In the continuous case,

E(g(X,Y )) =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)f(x, y) dy dx

Corollary (Linearity of expectation). Let c1, . . . cn be constants, and X1, . . . Xk be random vari-
ables. Then

E

(
n∑

i=1

cigi (X1, . . . Xk)

)
=

n∑
i=1

ciE (gi (X1, . . . Xk))

In particular, for X,Y and c1 = c2 = 1,

E(X + Y ) = E(X) + E(Y )

Example. Let the PDF of X and Y be

f(x, y) =

{
2
7 (x+ 2y) 0 < x < 1, 1 < y < 2

0 otherwise
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Then we see that

E

(
X

Y 3

)
=

∫ 2

1

∫ 1

0

(
x

y3

)
2

7
(x+ 2y) dx dy

=
10

56

Theorem 25. If X and Y are independent, then E(XY ) = E(X)E(Y ).

Proof 27. Recall that X and Y are independent if and only if fX,Y (x, y) = fX(x)fY (y). So if
X and Y are independent, we find that

E(XY ) =

∫ ∞

−∞

∫ ∞

−∞
xyfX(x)fY (y) dy dx

=

∫ ∞

−∞
xfX(x) dx

∫ ∞

−∞
yfY (y) dy

= E(X)E(Y )

Example. Consider the joint PMF of X and Y given by

Table 6.1: Joint PMF

Y,X −1 0 1

0 1 1
6

1
12

1 1
4 0 1

2
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Then

E(X) = −1 · 1
4
+ 0 + 1 ·

(
1

2
+

1

2

)
=

1

3

E(Y ) = 0 + 1 ·
(
1

4
+

1

2

)
=

3

4

E(XY ) = 1 · −1 ·
(
1

4

)
+ 1 · 1 · 1

2

=
1

4

so E(XY ) = E(X)E(Y ). Now

P (X = −1|Y = 1) =
P (X = −1, Y = 1)

P (Y = 1)

=
1
4

1
4 + 1

2

=
1

3

However, P (X = −1) = 1
4 , which does not equal what we calculated above. So E(XY ) =

E(X)E(Y ) DOES NOT imply independence, and the converse is false.

Definition 52 (Covariance). The covariance of X and Y is

Cov(X,Y ) = E((X − E(X))(Y − E(Y )))

Remark. This measures a relationship with X and Y when they may not necessarily be inde-
pendent.

Theorem 26.
Cov(X,Y ) = E(XY )− E(X)E(Y )
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Proof 28.

Cov(X,Y ) = E(XY − E(X)Y −XE(Y ) + E(X)E(Y ))

= E(XY )− E(X)E(Y )− E(X)E(Y ) + E(X)E(Y )

= E(XY )− E(X)E(Y )

Corollary. If X and Y are independent, then Cov(X,Y ) = 0 (“uncorrelated”).

Theorem 27 (Properties of Covariance).

• Cov(X,X) = V (X)

• Cov(X,Y ) = Cov(Y,X)

• Cov(kX, Y ) = kCov(Y,X)

Note. We note that Cov(X,Y ) is a measure of the linear relationship of X and Y , and the
slope of the line depends on Cov(X,Y ).

Definition 53 (Correlation Coefficient). The correlation coefficient of X and Y is

ρX,Y =
Cov(X,Y )√
V (X)V (Y )

Theorem 28 (Correlation Coefficient Properties). For random variables X,Y ,

• −1 ≤ ρX,Y ≤ 1

• ρX,Y = 0 if X,Y are independent.

• ρX,Y = ±1 if and only if Y = αX + β for some α, β ∈ R

Example. Let the PDF of X,Y be

f(x, y) =

{
2 x > 0, y > 0, x+ y < 1

0 otherwise

Find Cov(X,Y ).
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We have

E(X) =

∫ 1

0

∫ 1−x

0

x(2) dy dx

=
1

3

E(Y ) =

∫ 1

0

∫ 1−x

0

y(2) dy dx

=
1

3

E(XY ) =

∫ 1

0

∫ 1−x

0

xy(2) dy dx

=
1

12

So Cov(X,Y ) = E(XY )− E(X)E(Y ) = 1
18 . Moreover, can find

V (X) = E(X2)− (E(X))2

=
1

18

V (Y ) =
1

18

ρX,Y =
Cov(X,Y )√
V (X)V (Y )

= 1

Theorem 29. Let X1, . . . Xn be random variables, and assume

Y1 =

n∑
i=1

aiXi

Y2 =

n∑
i=1

biXi

Then
Cov(Y1, Y2) =

∑
i=1

aibiV (Xi) + 2
∑
i<j

aibj Cov(Xi, Xj)

Proof 29. “tedious algebra”

71



Expected Value and Variance of Joint Variables CHAPTER 6. JOINT DISTRIBUTIONS

Corollary. If Y = X1 + . . .+Xn, then

Cov(Y, Y ) = V (Y )

=

n∑
i=1

V (Xi) + 2
∑
i<j

Cov(Xi, Xj)

Example. Let the PDF of X,Y be

f(x, y) =

{
1
3 (x+ y) 0 < x < 1, 0 < y < 2

0 otherwise

Find V (Z), where Z = 3X + 4Y − 5.

Since the variance of a constant is 0 and Cov(X, 5) = Cov(Y, 5) = 0, we want

V (3X + 4Y ) = 9V (X) + 16V (Y ) + 2 · (3 · 4Cov(X,Y ))

We find

E(X) =

∫ 1

0

xf(x, y) dy dx

=
5

9

E(X2) =

∫ 1

0

∫ 2

0

x2f(x, y) dy dx

=
7

18

V (X) = E(X2)− (E(X))2

=
13

162

E(Y ) =
4

9

E(Y 2) =
16

9

V (Y ) =
23

81

and
E(XY ) =

∫ 1

0

∫ 2

0

xyf(x, y) dy dx =
2

3

so Cov(X,Y ) = E(XY )− E(X)E(Y ) = − 1
81 . Thus, V (3X + 4Y ) = 805

162 .
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Example. Suppose we have 10 chips, 4 red and 6 blue. Let Y be the number of red chips
drawn, where each draw has equal probability of getting a red chip with replacement. Find
E(Y ) in 3 trials.

Let

Xi =

{
1 red chip on trial i
0 otherwise

be our indicator random variable. We want

E(Y ) = E

(
3∑

i=1

Xi

)

=

3∑
i=1

E(Xi)

= 3 (1 · P (X1 = 1) + 0 · P (X1 = 0))

= 3P (X1 = 1)

=
6

5

Also,

V (Y ) =

3∑
i=1

V (Xi)

=

3∑
i=1

E(X2)− (E(X))2

= 3

(
4

10
−
(

4

10

)2
)

=
18

25

Example. Recall that Y ∼ Hypergeometric(n,m, k) measured the probability of m successes
when drawing k elements without replacement from a set of n elements.

In our example, let n = 10, m = 4, k = 3, and let

Xi =

{
1 red chip on trial i
0 otherwise
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We have E(X1) =
4
10 . For X2, we have

E(X2) = 1 · P (X2 = 1) + 0 · P (X2 = 0)

= P (X2 = 1)

=

(
4

10

)(
3

9

)
+

(
6

10

)(
4

9

)
=

4

10

which we notice is the same as E(X1). This generalizes for every Xi, so

E(Y ) = E

(
3∑

i=1

Xi

)

= 3

(
4

10

)
=

6

5

We have that the expected values are the same with or without replacement. We can compute
the variance as well:

V (Y ) =

3∑
i=1

V (Xi) + 2
∑

1≤i<j<3

Cov(Xi, Xj)

=
14

25

This is a smaller variance than the previous example. This is reasonable, since when we draw
without replacement, the sample size gets smaller each time.
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Chapter 7

Moments and Moment Generating
Functions

7.1 Univariate Moment Generating Functions

Definition 54 (Moment). Let X be a random variable. The r’th moment of X about the
origin is

µ′
r = E(Xr)

=
∑
x

xrf(x) (discrete case)

=

∫ ∞

−∞
xrf(x) dx (continuous case)

for any non-negative integer r.

Note. Note that µ′
1 = E(X).

Definition 55 (Moment about the mean). Let X be a random variable. The r’th moment
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about the mean µ is

µr = E((X − µ)r)

=
∑
x

(x− µ)rf(x) (discrete case)

=

∫ ∞

−∞
(x− µ)rf(x) dx (continuous case)

for any non-negative integer r.

Note. Note that µ2 = E((X − µ)2) = V (X).

Definition 56 (Moment Generating Function). The moment generating function or MGF of
a random variable X is

MX(t) = E
(
etX
)

=
∑
x

etxf(x) (discrete case)

=

∫ ∞

−∞
etxf(x) dx (continuous case)

Why do we define this? Note that expanding

etx = 1 + tx+
(tx)2

2!
+

(tx)3

3!
. . .∫ ∞

−∞
etxf(x) dx =

∫ ∞

−∞

(
1 + tx+

(tx)2

2!
+ . . .

)
f(x) dx

MX(t) =

∫ ∞

−∞
f(x) dx+ t

∫ ∞

−∞
xf(x) dx+

t2

2!

∫ ∞

−∞
x2f(x) dx . . .

= 1 + µ′
1t+ µ′

2

t2

2
+ . . .+ . . . µ′

r

tr

r!
+ . . .

=

∞∑
n=0

µ′
n

tn

n!

So the coefficient of tn

n! of etx is µ′
n, the n’th moment.

76



CHAPTER 7. MOMENTS Univariate Moment Generating Functions

Theorem 30. We have
M

(n)
X (0) =

dn

dtn
(MX(n))

∣∣∣
t=0

= µ′
n

Proof 30. By differentiating n times, all lower powers on n will vanish, but higher powers will
still have t involved. The theorem follows from the fact that

dn

dtn

(
µ′
n

tn

n!

)
= µ′

n

Example. Let the PDF of X be

f(x) =

{
e−x x > 0

0 otherwise

Find the MGF of f(x) and a simple expression for µ′
r.

We have

MX(t) = E(etX)

=

∫ ∞

0

etxe−x dx

=

∫ ∞

0

e−x(1−t) dx

=
1

1− t
|t| < 1

=

∞∑
n=0

tn

=

∞∑
n=0

n!
tn

n!

So we see that µ′
r = r!.
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Alternatively, we can evaluate the derivatives and find a pattern:

M ′
X(t) =

1

(1− t)2

M ′′
X(t) =

2

(1− t)3

· · ·M (r)
X (t) =

1 · 2 · 3 · . . . r
(1− t)r+1

So µ′
n = M

(n)
X (0) = n!.

Example. Let random variable X have PMF of

f(x) =

{
1
8

(
3
x

)
x = 0, 1, 2, 3

0 otherwise

Find the MGF of X, and determine the second moment about the origin.
We have

MX(t) = E
(
etX
)

=
1

8

3∑
x=0

etx
(
3

x

)
=

1

8

(
1 + 3et + 3e2t + e3t

)

So µ′
2 = M

′′

X(0) = 3.

7.2 Moment Generating Functions of Some Discrete Distri-
butions

Definition 57 (MGF of the Uniform Distribution). Let X be a random variable with PMF

p(x) =
1

n
for x = 1, 2, . . . , n

Then
MX(t) =

et

n

(
1− etn

1− et

)
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Proof 31. We have

MX(t) = E(etX)

=

n∑
x=1

etx
1

n

=

n−1∑
x=0

et(x+1) 1

n

=
et

n

n−1∑
x=0

(
et
)x

=
et

n

(
1− etn

1− et

)

Definition 58 (MGF of the Binomial Distribution). Let X ∼ Binom(n, p). Then we have

MX(t) = (pet + (1− p))n

Proof 32. The PMF is f(x;n, p) =
(
n
x

)
px(1− p)n−x for x = 0, . . . n. We have

MX(t) = E(etX)

=

n∑
x=0

etx
(
n

x

)
px(1− p)n−x

=

n∑
x=0

(
n

x

)
(pet)x(1− p)n−x

= (pet + (1− p))n

Definition 59 (MGF of the Geometric Distribution). Let X ∼ Geom(p). Then we have

MX(t) =
(pet)r

(1− (1− p)et)r

for t < − ln(1− p)
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Proof 33. We see that the PMF is p(x) = (1− p)x−1p for x = 1, 2, . . .. We have

MX(t) = E(etX)

=

∞∑
x=0

etx(1− p)xp

= p

∞∑
x=0

((1− p)et)x

=
p

1− (1− p)et

This only holds when t < − ln(1− p), as otherwise we cannot use the geometric series to
evaluate this.

Definition 60 (MGF of the Negative Binomial). Let X ∼ NegativeBinomial(r, p). Then

MX(t) =
(pet)r

(1− (1− p)et)r

for t < − ln(1− p)

Proof 34. We see the PMF is f(x; r, p) =
(
x−1
r−1

)
pr(1−p)x−r for x = r, r+1, . . .. This is similar

to the geometric distribution, and following a similar argument we get

MX(t) =
(pet)r

(1− (1− p)et)r

for t < − ln(1− p)

Definition 61 (MGF of the Hypergeometric). Get pranked there is no easy formula :)

Definition 62 (MGF of the Poisson Distribution). Let X ∼ Poisson(λ). Then

MX(t) = exp
(
λ(et − 1)

)
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Proof 35. The Poisson PMF is f(x;λ) = λxe−λ

x! . We have

MX(t) = E(etX)

=

∞∑
x=0

etx
λxe−λ

x!

=

∞∑
x=0

(etλ)xe−λ

x!

= e−λee
tλ

= exp
(
λ(et − 1)

)

Remark. Observe that we can use the MGF to find E(X) and V (X). For example, for the
Poisson distribution, we have M ′

X(t) = eλ(e
t−1) (λet) and M ′

X(0) = λ = E(X). Moreover,
M

′′

X(0) = E(X2), which allows us to find V (X).

Lemma 2. If Y = aX + b, then
MY (t) = ebtMX(at)

Proof 36.

MY (t) = E(etY )

= E
(
et(aX+b)

)
= E

(
etbeatX

)
= etbE(eatX)

= ebtMX(at)

7.3 Moment Generating Functions of Some Continuous Dis-
tributions
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Definition 63 (MGF of the Uniform Distribution). For X ∼ U(α, β), we have

MX(t) =
1

t(β − α)

(
eβt − eαt

)

Proof 37. We know that the PDF is f(x;α, β) = 1
β−α for α < x < β. We have

MX(t) = E(etX)

=

∫ β

α

1

β − α
etx dx

=
1

t(β − α)

(
eβt − eαt

)

Definition 64 (MGF of the Normal Distribution). If X ∼ N(µ, σ2), we have

MX(t) = exp

(
µt+

(σt)2

2

)

Proof 38. Note that if Z ∼ N(0, 1), then X = µ+ σZ. The PDF of Z is

f(z) =
1√
2π

e−t2/2
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Then

MZ(t) = E(etZ)

=

∫ ∞

−∞

1√
2π

etze−z2/2 dz

=
1√
2π

∫ ∞

−∞
e−z2/2+tz dz

=
1√
2π

∫ ∞

−∞
e−(z2−2tz)/2 dz

=
1√
2π

∫ ∞

−∞
e−((z−t)2−t2)/2 dz

= et
2/2 1√

2π

∫ ∞

−∞
e−(z−t)2/2 dz

= et
2/2

∫ ∞

−∞
N(µ = t, σ2 = 1) dz

= et
2/2

So the MGF of X is

MX(t) = Mµ+σZ(t)

= eµtMZ(σt)

= eµte(σt)
2/2

= exp

(
µt+

(σt)2

2

)

Definition 65 (MGF of the Gamma Distribution). For X ∼ Gamma(α, β), we have

MX(t) =

(
1− t

β

)−α
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Proof 39. We see that

MX(t) =

∫ ∞

0

etxf(x) dx

=

∫ ∞

0

βαxα−1

Γ(a)
e−(β−t)x dx

=
βα

Γ(α)(β − t)

∫ ∞

0

(
u

β − t

)α−1

e−u du where we u-sub with u = (β − t)x

=
βα

Γ(α)(β − t)α

∫ ∞

0

uα−1e−u du

=
βα

Γ(α)(β − t)α
Γ(α)

=

(
1− t

β

)−α

Definition 66 (MGF of the Beta Distribution). Pranked, no easy formula.

7.4 Joint Moments, Sums, and Products

Definition 67 (Joint MGF). Let X1, . . . Xn be random variables and define X = (X1, . . . Xn),
and t = (t1, . . . tn). The function

MX(t1, . . . tn) = M(t)

= E(exp(t1x1 + . . .+ tnxn))

= E(exp(t · x))

is the Joint MGF of X1, . . . Xn.

Lemma 3. Let a = (a1, . . . an) and b = (b1, . . . bn). If Y = a · X + b · 1 = (a1X1 + b1) +
(a2X2 + b2) + . . ., then

MY (t) = et·bMX(a · t)

Note. Note that MX(0, 0, . . . , ti, . . . , 0, 0) = E(etiXi) = MXi
(ti).
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Theorem 31 (Uniqueness). Two random variables X and Y have the same distribution if and
only if MX(t) = MY (t).

Theorem 32 (Independence). If X1, . . . , Xn are independent, then the joint MGF is

MX(t) =

n∏
i=1

MXi(ti)

Theorem 33 (Expectation from Moments). For random variable X,

∂2

∂ti∂tj
MX(t)

∣∣∣
t1=t2=...tn=0

= E(XiXj)

Remark. From the product of moments, if we look at the univariate case, say Z = X + Y
where X,Y are independent, we get

MZ(t) = E(etZ)

= E
(
et(X+Y )

)
= E

(
etXetY

)
= E

(
etX
)
E
(
etY
)

= MX(t)My(t)

Example. Suppose X,Y ∼ U(−1, 1). From earlier, we find that

MX(t) =
1

2t

(
et − e−t

)
If X and Y are independent, then

MX+Y (t) =

(
et − e−t

2t

)2

=
e2t + 2e−2t

4t2

which does NOT remain uniform.
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Example. Let X1, . . . Xn be independent, and assume

Xi ∼ Gamma(αi, β)

To obtain the MGF of Y =
n∑

i=1

Xi, we get

MY (t) =

n∏
i=1

MXi
(t)

=

n∏
i=1

(
1− t

β

)−αi

=

(
1− t

β

)−
n∑

i=1
αi

so MY (t) is the MGF of Gamma
(

n∑
i=1

αi, β

)
. Therefore, the sum of independent Gamma

random variables remains Gamma, provided that β is the same for all random variables.

Example. Let the joint PDF of X and Y be

fX,Y (x, y) =

{
e−y 0 < x < y < ∞
0 otherwise

Find the joint MGF.
We have

MX,Y (t0, t1) = E
(
et0X+t1Y

)
=

∫ x=∞

x=0

∫ y=∞

y=x

et0x+t1y(e−y) dy dx

=

∫ x=∞

x=0

∫ y=∞

y=x

et0xe(t1−1)y dy dx

=

∫ ∞

0

1

t1 − 1

(
−et0xe(t1−1)x

)
dx

=

∫ ∞

0

1

t1 − 1

(
−ex(t0+t1−1)

)
dx

=
1

t1 − 1
· 1

t0 + t1 − 1

for t0 + t1 < 1, t < 1. We can get MX(t) as MX,Y (t, 0) =
1

1−t .
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Example. Let the joint PDF of X,Y be

fX,Y (x, y) =

{
1

x!(y−x)! y = 0, 1, . . . , x = 0, 1, . . . y

0 otherwise

Find the joint MGF of X,Y .
We have

MX,Y (s, t) = E
(
esX+tY

)
=

∞∑
y=0

y∑
x=0

(
esx+ty

) 1

x!(y − x)!

=

∞∑
y=0

ety
y∑

x=0

esx

x!(y − x)!

=

∞∑
y=0

ety

y!

y∑
x=0

y!

x!(y − x)!
esx

=

∞∑
y=0

ety

y!

y∑
x=0

(
y

x

)
esx

=

∞∑
y=0

ety

y!
(1 + es)y

=

∞∑
y=0

(et(1 + es))y

y!

= exp
(
et(1 + es)

)
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Chapter 8

Conditional Expectation

8.1 Conditional Expectation

Definition 68 (Conditional Expectation). If X is a random variable, then the conditional expec-
tation g(x) given Y = y is

• E(g(x)|y) =
∑
x
g(x)f(x|y) in the discrete case

• E(g(x)|y) =
∫∞
−∞ g(x)f(x|y) dx in the continuous case

In particular, if g(x) = xi, the conditional i’th moment is E(Xi|Y = i). Additionally, E(X|Y =
y) is the conditional mean and V (X|Y = y) = E(X2|Y = y)−(E(X|Y = y))2 is the conditional
variance.

Theorem 34. We have

1. E(Xi) = E(E(Xi|Y = y))

2. V (X) = V (E(X|Y )) + E(V (X|Y ))

Proof 40. (Proof of 1). We have

E(Xi|Y = y) =

∫ ∞

−∞
xif(x|y) dx

=

∫ ∞

−∞
xi f(x, y)

gY (y)
dx

= h(Y )
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So then we get

E(h(Y )) =

∫ ∞

−∞
h(y)gY (y) dy

=

∫ ∞

−∞

(∫ ∞

−∞
xi f(x, y)

gY (y)
dx

)
gY (y) dy

=

∫ ∞

−∞

∫ ∞

−∞
xif(x, y) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
xigX(x)f(y|x) dx dy

=

∫ ∞

−∞
xigX(x)

∫ ∞

−∞
f(y|x) dy dx

=

∫ ∞

−∞
xigX(x) dx

= E(Xi)

Proof 41. (Proof of 2). We have

V (E(X|Y )) + E(V (X|Y )) = E((E(X|Y ))2)− (E(E(X|Y )))2 + E
(
E(X2|Y )− (E(X|Y ))2

)
= E(E(X|Y ))2)− E(X)2 + E(E(X2|Y ))− E(E(X|Y ))2

By (1), we have that E(E(X2|Y )) = E(E(X2)) = E(X2). Therefore, we get

E(E(X|Y )2)− (E(X))2 + E(X2)− E(E(X|Y ))2

The first and last cancel, and we get

E(X2)− (E(X))2 = V (X)

Example. Suppose P (Y = 1) = 1
8 , P (Y = 2) = 7

8 . Let Z = X|Y . Define P (Z = 2Y ) = 3
4 ,

P (Z = 3Y ) = 1
4 .

Note if y = 1, then

X|(Y = 1) =

{
2 with prob 3

4

3 with prob 1
4
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Then E(X|Y = 1) = 2 · 3
4 + 3 · 1

4 = 9
4 . Similarly, E(X|Y = 2) = 4 · 3

4 + 6 · 1
4 = 18

4 . Therefore,

E(X|Y ) =

{
9
4 if y = 1, prob 1

8
18
4 if y = 2, prob 7

8

Then we see that
E(E(X|Y )) =

9

4
· 1
8
+

18

4
· 7
8

Theorem 35 (Law of Total Expectation). We have

E(X) = E(E(X|Y )) =
∑
y

E(X|Y = y)P (Y = y)

Moreover, if A1, . . . An partition the sample space, then

E(X) =

n∑
i=1

E(X|Ai)P (Ai)

Note. Recall if B1, . . . Bn partition S, then P (A) = P (A|B1)P (B1) + . . . P (A|Bn)P (Bn).

Example. Let the joint PDF of X,Y be

fX,Y (x, y) =

{
x2e−x(y+1) x, y > 0

0 otherwise

Find E(X|Y ).

E(X|Y ) =

∫ ∞

−∞
xf(x|y) dx

=

∫ ∞

0

x
x2e−x(y+1)

gY (y)
dx

We need gY (y). Note

gY (y) =

∫ ∞

−∞
x2e−x(y+1) dx
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Integrating this by parts twice, we get

gY (y) =
2

(y + 1)3

Then we get

E(X|Y ) =

∫ ∞

0

1

2
(y + 1)3x2e−x(y+1) dx

Let u = x(y + 1). Then du = y + 1.

E(X|Y ) =
1

2(y + 1)

∫ ∞

0

u3e−u du

=
1

2(y + 1)
Γ(4)

=
3!

2(y + 1)

=
6

2(y + 1)

Example. A man is stuck in a cave. There are 3 tunnel exists. One tunnel takes 2 hours to
get out. Tunnel 2 takes 5 hours but returns to the starting location. Tunnel 3 takes 7 hours
but returns to the starting location. If he picks a tunnel at random each time, what is the
expected time until the man gets out of the cave?

Let X be the total hours to get out and Y be which tunnel he begins. We want

E(X) =

3∑
y=1

E(X|Y = y)P (Y = y)

= E(X|Y = 1)P (Y = 1) + E(X|Y = 2)P (Y = 2) + E(X|Y = 3)P (Y = 3)

= 2 · 1
3
+ (5 + E(X)) · 1

3
+ (7 + E(X))

1

3

Now solving for E(X), we get E(X) = 14.

Example. A biased coin has P (heads) = p. We toss the coin until we get 2 consecutive heads.
What is the expected number of tosses.

Let A be the event of the sequence H,H, A2 be the event of H,T , A3 be the event of just
T . Note that A1, A2, A3 partition the sample space of toss sequences. If X = the number of
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tosses to get 2 consecutive heads,

E(X) = E(X|A1)P (A1) + E(X|A2)P (A2) + E(X|A3)P (A3)

= 2 · p2 + (2 + E(X)) · p(1− p) + (1 + E(X)) · (1− p)

Solving this for E(X) gives us
E(X) =

p+ 1

p2
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Chapter 9

Bounds

9.1 Hölder and Minkowski’s Inequality
Sometimes, we may not know the distribution. Estimations are made for various parameters, such
as E(X). Moreover what if we do not know the joint distribution, but do we know the distributions
of X and Y ?

Theorem 36 (Hölder’s Inequality). Let X and Y be random variables, and p > 1 such that
1
p + 1

q = 1. Then

|E(XY )| ≤ E(|XY |)
≤ (E(|X|p))1/p(E(|Y |q))1/q

Proof 42. (First Inequality). We have

E(XY ) =

∫ ∞

−∞

∫ ∞

−∞
xyfXY (x, y) dy dx

≤
∫ ∞

−∞

∫ ∞

−∞
|xy|fXY (x, y) dy dx

= E(|XY |)

E(XY ) =

∫ ∞

−∞

∫ ∞

−∞
xyfXY (x, y) dy dx

≥
∫ ∞

−∞

∫ ∞

−∞
−|xy|fXY (x, y) dy dx

= −E(|XY |)
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So |E(XY )| ≤ E(|XY |).

Remark. If p = 2, then
|E(XY )| ≤

(
E(|X|2)

)1/2 (
E(|Y |2)

)1/2
which is the Cauchy-Schwarz inequality with respect to the inner product ⟨X,Y ⟩ = E(XY ).

Also note that if X = |Z|r for 1 < r < p and Y = 1, then

|E(XY )| ≤ E(|Z|r)
≤ (E(|Z|rp))1/p

Letting s = pr, we find that

E(|Z|r) ≤ (E(|Z|s))r/s

(E(|Z|r))1/r ≤ (E(|Z|s))1/s

for 1 < r < s, which is called Lyapunov’s Inequality.

Example. Suppose Z1 = X − E(X) and Z2 = Y − E(Y ). By the Cauchy-Schawrz inequality,
we have

|E(z1z2)| = |E((X − E(X))(Y − E(Y )))|

≤ E
(
|X − E(X)|2

)1/2
E
(
|Y − E(Y )|2

)1/2
|Cov(X,Y )| ≤

√
V (X)

√
V (Y )∣∣∣∣∣ |Cov(X,Y )|√

V (X)
√
V (Y )

∣∣∣∣∣ ≤ 1

which shows that the correlation coefficient satisfies |ρX,Y | ≤ 1.

Example. Let X ∼ N(µ1, 1) and Y ∼ N(µ2, 1). We want to find E(XY ), but we don’t have
the joint PDF. Then we have

V (X) = E(X2)− (E(X))2

E(X2) = 1 + (E(X))2
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By the Cauchy-Schwarz inequality, we have

|E(XY )| ≤
(
E(|X|2)

)1/2 (
E(|Y |)2

)1/2
=
(
1 + (E(X))2

)1/2 (
1 + (E(X))2

)1/2
which gives a bound on E(XY ) without the joint PDF.

Theorem 37 (Minkowski’s Inequality). Let p ≥ 1. Then

E(|X + Y |p) ≤ (E(|X|p))1/p + (E(|Y |p)1/p

Proof 43. We have

E(|X + Y |p) = E(|X + Y ||X + Y |p−1)

≤ E
(
(|X|+ |Y |)(|X + Y |p−1)

)
= E

(
|X||X + Y |p−1 + |Y ||X + Y |p−1

)
= E

(
|X||X + Y |p−1

)
+ E

(
|Y ||X + Y |p−1

)
Note that

E(|X||X + Y |p−1) ≤ E(|X|p)1/pE
(
|X + Y |q(p−1)

)1/q
= E(|X|p)1/pE(|X + Y |p)1/q

E(|Y ||X + Y |p−1) ≤ E(|Y |p)1/pE
(
|X + Y |q(p−1)

)1/q
= E(|Y |p)1/pE(|X + Y |p)1/q

So

E(|X + Y |p) ≤
(
E(|X|p)1/p + E(|Y |p)1/p

)
E(|X + Y |p)1/q

E(|X + Y |p)1−1/q ≤ E(|X|p)1/p + E(|Y |p)1/p

E(|X + Y |p)1/p ≤ E(|X|p)1/p + E(|Y |p)1/p

Example. Let X,Y ∼ Gamma(α, β). We have V (X) = αβ2 and E(X) = αβ.
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The left hand side of Minkowski’s inequality for p = 2 is

E(|X + Y |2)1/2 = E(|X|2 + 2|XY |+ |Y |2)1/2

which needs the Joint PDF. Instead, we can use the inequality to get

E(|X + Y |2)1/2 ≤ 2
(
αβ2 + (αβ)2

)1/2
since E(X2) = V (X) + E(X)2 = αβ2 + (αβ)2.

9.2 Markov and Chebyshev’s Inequality

Theorem 38 (Markov). Let X be a random variable that takes on non-negative values. Then
for any a > 0,

P (X ≥ a) ≤ E(X)

a

Proof 44. We have

E(X) =
∑
x≥a

xP (X = x) +
∑
x<a

xP (X = x)

≥
∑
x≥a

xP (X = x)

≥
∑
x≥a

aP (X = x)

= aP (X ≥ a)

So P (X ≥ a) ≤ E(X)
a .

Example. An exam average is 75%. If we let a = 80, and X be the score on the exam, then

P (X ≥ 80) ≤ 75

80
≈ 0.9375

So the percentage of students scoring at least 80% can be at most 93.75%.

Example. Let X ∼ Binomial(10, 1
2 ), so E(X) = 5. If a = 11, then we get P (X ≥ 11) ≤ 5

11 ,
though the probability is clearly 0.
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Theorem 39 (Chebyshev). Let X be a random variable, and define µ = E(X), σ2 = V (x).
Here, σ is the standard deviation. Then for any k > 0,

P (|X − µ| ≥ k) ≤ σ2

k2

In the case k = cσ, where c is a positive constant, we can write

P (|X − µ| ≤ cσ) ≥ 1− 1

c2

In other words, the probability that X takes on values c standard deviations is at least 1− 1
c2 .

Proof 45. We have

σ2 = V (X)

= E((X − µ)2)

=

∫ ∞

−∞
(x− µ)2f(x) dx

=

∫ µ−k

−∞
(x− µ)2f(x) dx+

∫ µ+k

µ−k

(x− µ)2f(x) dx+

∫ ∞

µ+k

(x− µ)2f(x) dx

≥
∫ µ−k

−∞
(x− µ)2f(x) dx+

∫ ∞

µ+k

(x− µ)2f(x) dx

If x− µ ≤ −k or x− µ ≥ k, then (x− µ)2 ≥ k2. Therefore,

σ2 ≥
∫ µ−k

−∞
(x− µ)2f(x) dx+

∫ ∞

µ+k

(x− µ)2f(x) dx

≥
∫ µ−k

−∞
k2f(x) dx+

∫ ∞

µ+k

k2f(x) dx

So then

σ2

k2
≥
∫ µ−k

−∞
f(x) dx+

∫ ∞

µ+k

f(x) dx

= P (|X − µ| ≥ k)
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Example. Let the PDF of X be

f(x) =

{
630x4(1− x)4 0 < x < 1

0 otherwise

Integrating yields µ = E(X) = 1
2 , and σ =

√
1
44 ≈ 0.15.

By Chebyshev, the probability that X will take on values within 2 standard deviations of
the mean yields

P (0.2 < X < 0.8) = P

(∣∣∣∣X − 1

2

∣∣∣∣ < 0.3

)
≥ 1− 1

22

=
3

4

Example. An IQ test has mean 100, standard deviation 16. Show that the probability that a
person has an IQ of at least 148 or at most 52 is at most 1

9 using Chebyshev’s theorem.
Here, X ≥ 148, X ≤ 52, so

|X − 100| ≥ k

P (|X − µ| ≥ 48) ≤ σ2

k2

=
162

482

=
1

9
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Chapter 10

The Weak and Strong Law of
Large Numbers

10.1 Convergence and Law of Large Numbers

Definition 69 (Convergence in probability). Let X1, X2, . . . be an infinite sequence of random
variables defined on a sample space S. Then the sequence converges in probability to a
random variable X if for all ϵ > 0,

lim
n→∞

P (|Xn −X| < ϵ) = 1

We write Xn
P→ X if this occurs.

Denote Cn,ϵ = {s ∈ S||Xn(s)−X(s)| < ϵ}. If the sequence converges in probability, then

lim
n→∞

P (Cn,ϵ) = 1

for all ϵ > 0.

Example. Let S = [0,∞) and f(x) be a continuous PDF. Define

Xn(s) =

{
1 (n,∞)

0 otherwise

We claim that Xn converges in probability to the zero random variable. Here, we have Cn,ϵ =
{s ∈ S||Xn(s)− 0| < ϵ} = [0, n]. So

lim
n→∞

P (Cn,ϵ) = lim
n→∞

∫ n

0

f(x) dx
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Definition 70 (Almost surely convergence). Let X1, X2, . . . be an infinite sequence of random
variables. We say the sequence converges almost surely if for all ϵ > 0,

P
(
lim

n→∞
|Xn −X| < ϵ

)
= 1

We write Xn
a.s.→ X.

Remark. Almost surely convergence implies convergence in probability. The proof involves
real analysis, and uses infs and sups.

Example. Define a random variable Xn that takes on values 1 and 2, where 2 occurs more
often as n gets larger. Suppose the limiting random variable is X = 2. We need

lim
n→∞

P (|Xn −X| < ϵ) = 1

Here, P (|Xn − 2| < ϵ) means we have nearly all values Xn = 2 as n → ∞, so the chance that
|Xn − 2| < ϵ approaches 100%. So,

lim
n→∞

P (|Xn − 2 < ϵ) = 1

and so Xn
P→ X.

However, lim
n→∞

|Xn − X| < ϵ will NOT hold since there will always be some Xn = 1,
meaning |Xn − 2| will not be less than ϵ.

Therefore, Xn
P→ X does NOT imply Xn

a.s.→ X.

Theorem 40 (Weak Law of Large Numbers). Let X1, X2, . . . be a sequence of random variables
which are independent and identically distributed (i.i.d.). Assume E(Xi) = µ and V (Xi) = σ2.
Denote

Xn =
X1 +X2 + . . .+Xn

n

Then Xn
P→ µ.

Note. Observe that

E(Xn) =
1

n
(E(X1) + . . .+ E(Xn)) =

1

n
(nµ) = µ

However,

V (Xn) =
1

n2
(V (X1) + . . . V (Xn)) =

1

n2
(nσ2) =

σ2

n

which varies with n.
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Proof 46. We show that lim
n→∞

P (|Xn − µ| > ϵ) = 0. By Markov’s inequality, we have

lim
n→∞

P (|Xn − µ| > ϵ) = lim
n→∞

P
(
|Xn − µ|2 > ϵ2

)
≤ lim

n→∞

E(|Xn − µ|2)
ϵ2

= lim
n→∞

V (Xn)

ϵ2

= lim
n→∞

σ2

n
· 1

ϵ2

= 0

Note. In the big picture, the observed mean converges to the expected value as the number
of trials increases.

Example. Flip a fair coin. If it is heads, place a blue chip in a box. Otherwise, place a red
chip. Let

Xi =

{
1 heads
0 tails

count the number of blue chips on the i th trial. Clearly, µ = 1
2 .

Example. Let

X =

{
1 success
0 failure

Let Xi be the value of X at trial i. The average number of succcesses is

Xn =
X1 +X2 + . . . Xn

n

By the weak law of large numbers, Xn
P→ E(X). If we know X ∼ Bernoulli(p), then E(X) = p.

Example (Bernstein’s Theorem). If f(x) is continuous on [a, b], then for any ϵ > 0, there exists
a polynomial h(x) such that

|f(t)− h(t)| < ϵ

for all t ∈ [a, b]. This proof involves the weak law of large numbers (see Wikipedia).
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Theorem 41 (Strong Law of Large Numbers). If X1, X2, . . . are independently and identically
distributed, then

P
(
lim
n→∞

|Xn − µ| < ϵ
)
= 1

That is,
Xn

a.s.→ µ

Remark. The Strong Law of Large Numbers implies the Weak Law of Large Numbers.
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Chapter 11

Sampling and the Central Limit
Theorem

11.1 Sampling

Definition 71 (Convergence in Distribution). A sequence of random variables X1, X2, . . . con-
verges in distribution to a random variable X (denoted Xn

d→ X) if the CDFs satisfy

lim
n→∞

FXn (x) = FX(x)

for all x where FX(x) is continuous.

Example. Let

Xn(s) =

{
1 s = 1

0 s = 0

and let

X(s) =

{
1 s = 0

0 s = 1

Now lim
n→∞

P (|Xn −X| < ϵ) ̸= 1, so Xn does not converge in probability to X. However,

FXn
=

{
1
2 0 ≤ x < 1

1 x ≥ 1

Note that this is the same as FX , so this sequence converges in distribution.

Definition 72 (Random Sample). If X1, . . . Xn are independently and identically distributed
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random variables, we say they constitute a random sample from an infinite population.

Definition 73 (Statistic). A statistic is a value calculated from the random sample (not the
population). This process is called statistical inference.

Definition 74 (Sample Mean and Variance). If X1, X2, . . . Xn is a random sample, then the
sample mean is

X =

n∑
i=1

Xi

n

and the sample variance is

s2 =

n∑
i=1

(
Xi −X

)
n− 1

The factor of 1
n−1 is known as Bessel’s correction, and compensates for the fact that Xi−X

is smaller than Xi − µ.

Theorem 42. If X1, . . . Xn is a random sample from an infinite population with mean µ and
variance σ2, then

E(X) = µ

V (X) =
σ2

n

Now given a statistic from a sample of size n, we can naturally define a function on the random
variables X1, . . . Xn. Then

Y = g(X1, . . . Xn)

can be seen as a random variable. We now ask, what is the distribution of Y ?

Example. Let Xi ∼ Gamma(α, β). Consider the statistic

T =

n∑
i=1

Xi

Then we showed before that
T ∼ Gamma(nα, β)

Moreover, to find the distribution of X = T
n , we find

MX(t) = MT

(
1

n
t

)
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(Previously we had MaX(t) = MX(at)). Therefore,

MT

(
t

n

)
=

(
1

1− β
n t

)nα

=⇒ X ∼ Gamma
(
nα,

β

n

)
But what about Y = X + a? We can find

MY (t) = eat

(
1

1− β
n t

)nα

This does not correspond to a known distribution. The Central Limit Theorem provides a way to
approximate some of these distributions.

11.2 Central Limit Theorem

Theorem 43 (Central Limit Theorem). Let X1, X2, . . . Xn be a sequence of i.i.d. random vari-
ables with mean µ, variance σ2 (finite), and MGF MX(t). Then if

Xn =
X1 + . . .+Xn

n

Then
Xn − µ

σ/
√
n

d→ N(0, 1)

Equivalently,

lim
n→∞

P

(
Xn − µ

σ/
√
n

< a

)
=

∫ a

−∞

1√
2π

e−
x2

2 dx

Remark.

1. Idea of the CLT: Test samples many times. Compute the average of each sample. If
the sample size is “large enough”, then the distribution of these averages will look like a
normal distribution.

2. The CLT can be proven without using MX(t), and there are generalizations where the
random variables are not i.i.d.

3. CLT states the limit in terms of the average: however we can also approximate the sum
by multiplying the top and bottom by n.

4. As in the previous point, note that

X − µ

σ
√
n

=
X1 +X2 + . . .− nµ

σ
√
n
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Example. From earlier, Y = X + a had MGF

MY (t) = eat

(
1

1− β
n t

)nα

with the fact if X ∼ N(µ, σ), then Z = x−µ
σ has Z ∼ N(0, 1), then one finds X + a is

approximately

N

(
µ+ a,

σ2

n

)
So

Z =
X + a− (µ+ a)

σ/
√
n

Example. Consider the PMF

p(x) =

{
1
6 x = 1, 2, 3, 4, 5, 6

0 else

Consider picking a sample of size 2 (2 dice), with replacement and ordering.

Example. The amount of nicotine in a cigarette is a random variable with µ = 0.8 mg and
σ = 0.1 mg. If a person smokes 5 packs of cigarettes (100 cigarettes) a week, what is the
probability that the total nicotine consumed in a week is at least 82 mg?

Let Xi be the amount of nicotine in cigarette i. If X =
100∑
n=1

Xi, we want P (X ≥ 82). Let

Z ∼ N(0, 1) and let Φ be the CDF of N(0, 1). We have

P (X ≥ 82) = P

(
X − 100 · 0.8
0.1 ·

√
100

≥ 82− 100 · 0.8
0.1 ·

√
100

)
= P (Z ≥ 2)

= 1− Φ(2)

≈ 0.02275

Example. In a sample of 25 people, their height is measured. We find X = 67.64 inches.
Suppose σ2 = 9 for the population. Use the CLT to find the probability that µ exceeds 70
inches.

Here, if µ = 70 then Z = X−µ
σ/

√
n
= 67.64−70

3/
√
25

≈ −3.266. Note that we expect Z to become
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more negative for larger values than 70. Therefore, we want

P (Z < −3.266) = Φ(−3.266) ≈ 0.00056

Observe that in many applications, we begin with a discrete random variable and approx-
imate it as N(0, 1), a continuous random variable. We must use a continuity correction
where

P (X = i) ≈ P

(
i− 1

2
< X < i+

1

2

)
which is commonly used when X takes on integer values.

Example. 10 dice are rolled. Determine the probability that the sum is between 30 and 40,
inclusively, using the CLT.

Let Xi be the value rolled on die i. We find that µ = 7
2 , and σ2 = 35

12 . If X =
10∑
i=1

Xi, using

the continuity correction, we want

P (29.5 ≤ X ≤ 40.5) = P

29.5− 35√
35
12

√
10

≤ X − 35√
35
12

√
10

≤ 40.5− 35√
35
12

√
10


= P (−1.0184 ≤ Z ≤ 1.0184)

= Φ(1.0184)− Φ(−1.0184)

≈ 0.7

11.3 Proof of the Central Limit Theorem

Theorem 44. Let F (x), F1(x), F2(x), . . . be the CDFs of random variables X1, X2, X3, . . . with
moment generating functions M(t),MX1

(t),MX2
(t), . . .. Then if

lim
n→∞

MXn
(t) = MX(t)

then Xn
d→ X.

Theorem 45. Let Pn(x) be the n ’th degree Taylor polynomial centered at a:

Pn(x) =

n∑
k=0

f (k)(a)

k!
(x− a)k
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Then there is a c ∈ (a, x) such that

f(x) = Pn(x) +
f (n+1)(c)

(n+ 1)!
(x− c)n+1

Proof 47. To prove the CLT, by our first theorem, if Zn = X−µ
σ/

√
n

, it suffices to show that

MZn(t)
d→ e−t2/2, which is the MGF of the normal distribution. Let Yi =

Xi−µ
σ . We have

Zn =
X − µ

σ/
√
n

=

1
n

(
n∑

i=1

Xi

)
− µ

σ/
√
n

=
1√
n

n∑
i=1

Xi − µ

σ

=
1√
n

n∑
i=1

Yi

Observe that
E(Yi) = E

(
Xi − µ

σ

)
=

1

σ
E (Xi − µ) = 0

V (Yi) = V

(
Yi − µ

σ

)
=

1

σ2
V (Xi) = 1

Recall that if Mx(t) is an MGF, M (r)
X (0) = µ′

r = E(Xr). So,

MYi(0) = E(1) = 1

M ′
Yi
(0) = E(Yi) = 0

M ′′
Yi
(0) = V (Yi) = 1

Using Taylor’s Theorem for n = 1 on MYi
(t), we get that for some 0 < c < t, we have

MYi
(t) = MYi

(0) +M ′
Yi
(0) · t+M ′′

Yi
(c) · t

2

2!

= 1 +M ′′
Yi
(c) · t

2

2

= 1 +
t2

2
+

1

2

(
M ′′

Yi
(c)− 1

)
t2
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We can then compute the MGF of Zn as the product of the MGFs of 1√
n
Yi, which is

MZn(t) =
(
MYi/

√
n(t)

)n
=

(
MYi

(
t√
n

))n

=

(
1 +

1

2

(
t√
n

)2

+
1

2
(M ′′

Yi
(c)− 1)

(
t√
n

)2
)n

for some 0 < c < t√
n

. As n → ∞, we get

lim
n→∞

M ′′
Yi
(c)− 1 = M ′′

Yi
(0)− 1 = 0

So,

lim
n→∞

MZn(t) = lim
n→∞

(
1 +

1

2

(
t√
n

)2

+
1

2
(M ′′

Yi
(c)− 1)

(
t√
n

)2
)n

= lim
n→∞

(
1 +

t2/2

n

)n

= et
2/2

Which is the MGF of N(0, 1), as desired.

109



Chapter 12

More Bounds

12.1 Contelli and Jensen’s Inequality
Recall that Markov’s inequality gave us P (X ≥ a) ≤ E(X)

a .

Theorem 46 (Contelli; One-sided Chebyshev). If a > 0, then

P (X − E(X) ≥ a) ≤ σ2

σ2 + a2

Proof 48. Let b > 0. Then

P (X − E(X) ≥ a) = P (X ≥ a+ E(X))

= P (X + b ≥ (a+ b) + E(X))

= P ((X + b)2 ≥ ((a+ b) + E(X))2)

≤ E((X + b)2)

(a+ b+ E(X))2

≤ V ((X + b)2) + (E(X + b))2

(a+ b+ E(X))2

=
σ2 + (b+ µ)2

(a+ b+ µ)2

Minimizing this gives b = σ2

a − µ, which yield the desired bound.

Example. An exam had average 75% and variance 8. Find an upper bound on the probability
a student scored at least an 80%.
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We have

P (X ≥ 80) = P (X − 75 ≥ 5)

≤ 82

82 + 52

≈ 0.72

Definition 75 (Convex, Concave). A twice differentiable function g(x) is convex if g′′(x) ≥ 0.
Equivalently, for all 0 ≤ t ≤ 1 and x1, x2 in the domain, we have

g(tx1 + (1− t)x2) ≤ tg(x1) + (1− t)g(x2)

We say that g(x) is concave if −g(x) is convex.

Theorem 47 (Jensen). If g(x) is a convex function, then

E(g(X)) ≥ g(E(X))

Proof 49. We use Taylor’s theorem, centered at µ = E(X). Assume g′′(x) ≥ 0. For c ∈ (µ, x),
we get

g(x) = g(µ) + g′(µ)(x− µ) +
1

2
g′′(c)(x− µ)2

≥ g(µ) + g′(µ)(x− µ)

E(g(X)) ≥ E(g(µ) + g′(µ)(x− µ))

= g(µ) + g′(µ)E(x− µ)

= g(µ)

= g(E(X))

Example. Let g(x) =
√
x. Then

g′′(x) = −1

4
x− 3

2 < 0
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for all x > 0. This is concave, and hence h(x) = −
√
x is convex. By Jensen’s Inequality,

E(−
√
X) ≥ −

√
E(x)

−E(
√
X) ≥ −

√
E(X)

E(
√
X) ≤

√
E(X)

In general, if g(X) is concave, then E(g(X)) ≤ g(E(X)).

Example. Let g(x) = x2. We find that g(x) is convex, so by Jensen’s Inequality,

E(X2) ≥ (E(X))2

E(X2)− (E(X))2 ≥ 0

V (X) ≥ 0

Definition 76 (AM, GM, HM). Let ai > 0 be a sequence. Then

• 1
n

n∑
i=1

ai is the arithmetic mean.

• (
∏n

i=1 ai)
1
n is the geometric mean.

• n
n∑

i=1

1
ai

is the harmonic mean.

Example. A car drives 60 mph for 3 hours one way, and then 20 mph for 3 hours. The average
speed is

total distance
total time

=
3(60) + 3(20)

3 + 3
= 40

Suppose a car travels 60 miles each way. On the way there, it goes 60 mph. On the way back,
it goes 20 mph. The average speed is

total distance
total time

=
2(60)

60
60 + 60

20

= 30

Theorem 48 (AM-GM-HM).
HM ≤ GM ≤ AM
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Proof 50. Define the PMF

p(x) =

{
1
n x = a1, a2, . . .

0 else

Let g(x) = lnx. We see that g′′(x) = − 1
x2 < 0 for x > 0.

We have

E(X) =
1

n

n∑
i=1

ai

is the arithmetic mean. We also have

E(g(X)) = E(lnX)

=
1

n
ln a1 +

1

n
ln a2 + · · ·+ 1

n
an

=
1

n

n∑
i=1

ln ai

=
1

n
ln

(
n∏

i=1

ai

)

= ln

( n∏
i=1

ai

) 1
n


= lnGM

By Jensen’s inequality,

lnGM = E(g(X))

≤ g(E(X))

= lnAM

so GM ≤ AM. To show HM ≤ GM, define the PMF

p(y) =

{
1
n

1
a1
, 1
a2
, . . . 1

an

0 else
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Let g(y) = ln y. Then

E(Y ) =
1

n

n∑
i=1

1

ai

=
1

HM

g(E(Y )) = ln
1

HM

Then E(g(Y )) = E(lnY ) = 1
n

n∑
i=1

ln 1
ai

= ln

(∏n
i=1

1

a
1/n
i

)
= ln 1

GM . By Jensen’s Inequality,

ln
1

GM
= E(g(Y ))

≤ g(E(Y ))

= ln
1

HM

Therefore, HM ≤ GM.

Example. Let X be a random variable. Assume E(X) = 100. Apply Jensen’s Inequality to
obtain a bound on E

(
1

1+x

)
. We check

g(x) =
1

1 + x

g′′(x) =
2

(x+ 1)3

which is positive for x > −1. Using Jensen’s gives

E(g(X)) = E

(
1

1 +X

)
≥ g(E(X))

=
1

E(X) + 1

=
1

101
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Example. Consider the PMF

p(x) =

{
pi x = ai, 1 ≤ i ≤ n

0 else

Applying Jensen’s Inequality with g(x) = lnx, we find

E(g(X)) = E(lnX)

=

n∑
i=1

pi ln ai

≤ g(E(X))

= lnE(X)

= ln

(
n∑

i=1

piai

)

Thus,

n∑
i=1

ln api

i ≤ ln

(
n∑

i=1

piai

)

ln (ap1

1 ap2

2 . . . apn
n ) ≤ ln

(
n∑

i=1

piai

)
ap1

1 ap2

2 . . . apn
n ≤ p1a1 + p2a2 + . . .+ pnan

Now let n = 2, and define p1 = 1
p and p2 = 1

q , and let a1 = cp and a2 = dq, where c and d are
non negative. We get

ap1

1 ap2

2 = (cp)
1
p (dq)

1
q

= cd

≤ p1a1 + p2a2

=
cp

p
+

dq

q

where 1
p + 1

q = 1, and p, q > 1. This is Young’s Inequality.
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Choose c = |X|
E(|X|p)1/p and d = |Y |

E(|Y |q)1/q . Using Young’s Inequality, we get

|X||Y |
E(|X|p)1/pE(|Y |q)1/q

≤ |X|p

pE(|X|p
+

|Y |q

qE(|Y |q)

E

(
|X||Y |

E(|X|p)1/pE(|Y |q)1/q

)
≤ E

(
|X|p

pE(|X|p
+

|Y |q

qE(|Y |q)

)

Now we can simplify the right hand side:

E

(
|X|p

pE(|X|p
+

|Y |q

qE(|Y |q)

)
=

E(|X|p)
pE(|X|p)

+
E(|Y |q)
qE(|Y |q)

=
1

p
+

1

q

= 1

Therefore,

E

(
|X||Y |

E(|X|p)1/pE(|Y |q)1/q

)
≤ 1

E(|X||Y |) ≤ E(|X|p)1/pE(|Y |q)1/q

which is just Holder’s Inequality.
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