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Post-Quantum Cryptography

• Current cryptographic protocols rely on hardness
assumptions

• Large-scale quantum computers will be able to break
traditional cryptosystems

• Post-Quantum: Can we develop cryptographic systems that
are secure against both quantum and classical computers?

• Learning with Errors problem (LWE), lattice problems seem
hard for classical and quantum computers

• Motivating question: Can we crack* LWE? (side channel
security estimation)
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LWE (Almost)

Given A ∈ Zm×n
q and b ∈ Zm

q , find s where As = b mod q

A × s = b
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LWE

Now given an unknown, small Gaussian error e, find s

A × s + e = b
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Lattices

L(B) def
= {Bx | x ∈ Zn}
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Ellipsoidal Bounded Distance Decoding (EBDD)

Given a lattice Λ, an ellipsoid E with center µ and shape Σ, and the
promise that there exists a unique lattice point x ∈ Λ ∩ E, find x
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The EBDD Embedding (LWE → EBDD)

b

e
As

LWE: As + e = b

Shape: ||As − b||22 ≤ m · σ2 (big simplification)
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SVP

• Shortest Vector Problem → find the shortest nonzero point in
the lattice

• Very important in Post-Quantum Cryptography
• BKZ is our exponential-time algorithm for SVP (its a pretty

good algorithm)
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EBDD Reduces to SVP

We have techniques to turn EBDD into the SVP!
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EBDD Reduces to SVP

BKZ!

smaller EBDD ellipsoids =⇒ easier SVP instances
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Why LWE → EBDD → SVP?

• LWE → SVP already exists, so why LWE → EBDD → SVP?

• EBDD gives a visual representation of the LWE instance
(contrast with shortest vector problem)

• Offers different perspectives
• Apply hints, side-channel information to decrease ellipsoid

volume
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Background: Recap

LWE EBDD1

EBDD2

...

SVP EBDDn

Solution

EBDD Embedding

Apply Hint

Apply Hint

Apply Hint

BKZ
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Ellipsoid Based on Distributional Knowledge

s, e are Gaussian-distributed, so 95% confidence intervals can
define a new ellipsoid

−3σ 3σ
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Alpha Cuts

• The error term e is small: in particular, each ei is between −ℓ
and +ℓ.

• This gives m parallel lines intersecting our ellipsoid, with the
secret in between

−ℓ

+ℓ
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Alpha Cuts
• The error term e is small: in particular, each ei is between −ℓ

and +ℓ.
• This gives m parallel lines intersecting our ellipsoid, with the
secret in between

• Lowner-John ellipsoid
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Sage plot. Distribution ellipse is outside figure, black is new ellipse
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Ellipsoid Intersections

• Does the distribution ellipse (after alpha cuts) ∩ EBDD ellipse
give a smaller ellipsoid?
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What we did: Recap

1. Developed the alpha cuts method

2. Attemped to get provable bounds for change in volume from
alpha cuts

3. Building of the LWE Sage toolkit, programmed the
distributional ellipse and alpha cuts

4. Tested performance of alpha cuts at n = m = 1, 10, 20, 50, 70;
comparable to EBDD.

5. Ellipsoidal intersection
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Questions?
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