djects accept the call for banning and
" reputation

~ Maurice Shih, Michael Rosenberg, K , Ian Miers

Example: Wikipedia

Example: Wikipedia

Makes an edit

Example: Wikipedia

Makes an edit

_—

Can now view

edit and decide
——=J to ban user

Example: Wikipedia

Makes an edit

_—

Anonymous

Example: Wikipedia

Makes an edit

R

Anonymous

How can the
service provider
know which user
to ban?

Example: Wikipedia

Makes an edit

_— >

Anonymous S
How can the

service provider
——J) know which user

Answer: Anonymous Blocklisting to ban?

Complex feedback?

Complex feedback?

Makes an edit

Anonymous

Complex feedback?

Makes an edit

Anonymous e User has made k disinfo edits,
ban them

Complex feedback?

Makes an edit

Anonymous e User has made k disinfo edits,

ban them
e Place user on probation for x)

time

Complex feedback?

Makes an edit

_—

Anonymous e User has made k disinfo edits,
ban them
e Place user on probation for x)
time
e If the user has made k good
edits, increase their number
of edits per day

Asynchronous?

Asynchronous?

2=
v
c
(o
Ty)
)
X
(O
=

Anonymous

Asynchronous?

=
o
v
c
(o
Ty)
)
X
(O
=

Ine

Offl

Asynchronous?

/;’/

i

Offline §

A

Makes an edit

Reviews edit

User has made k disinfo edits,
ban them

Asynchronous?

Edit?) Banned.
_— >

Anonymous

Prior Work

PEREA

Limited functionality: No
complex feedback

Fixed parameters for all users
Moderation halts until oldest
are processed

SnarkBlock

- Built only for blocklisting
- Doesn’t support complex

state

BLAC

Does not support
programmable logic or
multidimensional state, only a
simple counter

Not asynchronous

Global halting

User does linear work in its
actions

SMART

State must be small

- Does not support

arbitrary updates

zKk-promises

e Anonymous state

e Fully programmable logic and
complex feedback

e Completely asynchronous

e Using zkSNARKS!

Can use for...

Forums with moderation
Oblivious VPNs (Apple, Cloudflare)
Whistleblowing applications
Cryptocurrency reputation

zk-0 bjects Commitments to Objects

_JC JCJe

State3
Serial Num -

User Object O

Reputation
Post Time

Prove statements

Reputation

Post Time
State3

Sada

Serial Num

User Object O

Prove Com(0O) € bulletin
and O.reputation > 30

_— >

Object Updates

Reputation

Post Time
State3

Reputation’
Post Time'
State3’

New Rand SN

Serial Num

o ~_ 7 0

O’ = meth(O, pub)

7, SN, Com(O’)

n: Com(0) € bulletin,
O.serial == SN,
Com(0’) == Com(0")
@(0, 0') ==

Object Updates

Reputation

Post Time
State3

Reputation’
Post Time'
State3’

New Rand SN

Serial Num

o ~_ 7 0

O’ = meth(O, pub)

Only the object owner can call
this method.

7, SN, Com(O’)

n: Com(0) € bulletin,
O.serial == SN,
Com(0’) == Com(0")
@(0, O') ==

—-—

Feedback Overview: Callbacks ==t
Reputation
Post Time -_

State3 Here is a callback for
method(0)
Serial Num —_—

[Callbacks]

—-—

Feedback Overview: Callbacks ==t
Reputation
Post Time -_

State3 Here is a callback for
method(0)
Serial Num —_—

[Callbacks]

I now call method(0)

—-—

Feedback Overview: Callbacks ==t
Reputation
Post Time -_

State3 Here is a callback for
method(0)
Serial Num .

[Callbacks] .,
Reputation

Post Time’
State3’

I now call method(0)

Serial Num
[Callbacks]

—-—

zk-promises: Base construction (Create) -5 -5

Reputation
P . (o e
Post Time O

State3

Here is a ticket T,
zZ, SN, Com(0")

Serial Num —————————————
[Tickets]
n: Com(0) € bulletin,
o O.serial == SN,
Com(0’) == Com(0"
PD(0, O) ==

O'.ticket list = O.ticket list + T

=

zk-promises: Base construction (Call) Ladd
Reputation o e
Post Time

State3
method(0’): Put T on
bulletin
Serial Num ‘\
[Tickets] - — o

0 All “Called”
Tickets E

Pt
Cn L T

zk-promises: Base construction (Settle) & &

Reputation

Post Time
State3

Serial Num
[Tickets]

zk-promises: Base construction (Settle) & &

Reputation

Post Time
State3

n: For T € [Tickets],

Serial Num
[Tickets]

zk-promises: Base construction (Settle) & &

Reputation

Post Time
State3

n: For T € [Tickets],

e T E€ callback bulletin,

Removed T from [Tickets]

Serial Num O’ = method(0)
[Tickets]

zk-promises: Base construction (Settle) & &

Reputation

Post Time
State3

n: For T € [Tickets],

e T € callback bulletin,
Removed T from [Tickets]

Serial Num O’ = method(0)
[Tickets] e T écallback bulletin,
T remains in [Tickets]
O'=0

zk-promises: Base construction (Settle) & &

Reputation

Post Time
State3

n: For T € [Tickets],

e T € callback bulletin,
Removed T from [Tickets]

Serial Num O’ = method(0)
[Tickets] e T écallback bulletin,
T remains in [Tickets]
O'=0

Requires non-membership check

zk-promises: Base construction (Settle) & &

Reputation

Post Time
State3

n: For T € [Tickets],

e T € callback bulletin,
Removed T from [Tickets]

Serial Num O’ = method(0)
[Tickets] e T écallback bulletin,
T remains in [Tickets]
O'=0

Requires non-membership check

How do we have a list?

Callback List

Reputation

List: Hash chain!

Post Time :
Concretely: [T, T,...]iIsH(H(T,), T
State3 yelly Tzl e 12

Serial Num
[Tickets]

Callback List

EEPtu_::_‘:"t'on List: Hash chain!
ost Time .
Concretely: [T, T, ...]is H(H(T), T.)
State3 -1l 1
old cur new
Serial Num T
[Tickets] i
T2
0 T,
T4
T5 s T

Callback List

EEPtu_::_‘:"t'on List: Hash chain!
ost Time .
Concretely: [T, T,...]iIsH(H(T,), T
State3 yelly Tzl e 12
old cur new
Serial Num T T
[Tickets] : i
T2
0 T,
T4
T5 s T

Callback List
Eeptu_il:j:\tlon List: Hash chain!
ost Time .
Concretely: [T, T,...]iIsH(H(T,), T

State3 y:[T,T1,..] (H(T,), T,)

old cur new
Serial Num T T Not been
[Tickets] ! ! called

T2 T2

r

Callback List
Eeptu_il:j:\tlon List: Hash chain!
ost Time .
Concretely: [T, T,...]iIsH(H(T,), T
State3 y:[T,T1,..] (H(T,), T,)
old cur new
Serial Num T T Not been
[Tickets] ! ! called
T T
2 2 Called!
0, T, T, apply method
T4
T5 C

Callback List
Eeptu_il:j:\tlon List: Hash chain!
ost Time :
Concretely: [T, T, ...]is H(H(T), T.)
State3 V-1l 1z !
old cur new
Serial Num T T Not been
[Tickets] ! ! called
T T
2 2 Called!
0, T, T, apply method
T4 T4
T5 C

Callback List
Eeptu_il:j:\tlon List: Hash chain!
ost Time :
Concretely: [T, T, ...]is H(H(T), T.)
State3 V-1l 1z !
old cur new
Serial Num T T Not been
[Tickets] ! ! called
T T
2 2 Called!
0, T, T, apply method
T4 T4
T5 T5 X | I | | I |

zk-promises Base construction ===t
Reputation Wh . i |
Post Time en making a forum post: -

State3

Here is a callback for
method(0), SN, x

Serial Num
[old] [cur]

Reputation’ T R gate
Post Time' and R
State3’ andR

[new]

New Rand SN
[old’] [cur’]
[new’]

—-—

More Features shda
RePUt‘:"tiO“ Expiry: Store (callback, expiry) -
Post Time

State3

Here is a ticket (T, exp),
zZ, SN, Com(0O’)

Serial Num —_—
[old] [cur]

[new]

More Features

Reputation

Post Time
State3

Serial Num
[old] [cur]
[new]

Method Arguments!

Here is a ticket (T, exp, key),
zZ, SN, Com(0")

—

Call method:
method(O, args)

Post (7, Enckey(args))

/D

=

Sada

More Features

Reputation

Post Time
State3

Separate Callback Bulletin
and Service Provider

Serial Num
[old] [cur]

[new]

More Features

Reputation

Post Time
State3

Separate Callback Bulletin
and Service Provider

e Create Post + Call

Serial Num unlinkability: Reveal
[old] [cur] Com(T)

[new]

More Features

Reputation

Post Time
State3

Separate Callback Bulletin
and Service Provider

e Create Post + Call
Serial Num unlinkability: Reveal
[old] [cur] Com(T)
[new] e Ensure correct service
provider: Sign arguments
with ticket as public key

Application Specific

Reputation

Post Time
State3

e Rate Limiting (leaky
bucket)

Serial Num
[old] [cur]

[new]

Application Specific

RePUtf‘t'O“ e Rate Limiting (leaky
Post Time bucket)

State3 e Complex high dimensional

reputation

Serial Num
[old] [cur]

[new]

Application Specific

Reput?tlon e Rate Limiting (leaky
Post Time bucket)
States e Complex high dimensional
reputation
Serial Num e Multiple service providers
[old] [cur] can access different parts
of state

[new]

Application Specific

Reput?tlon e Rate Limiting (leaky
Post Time bucket)
States e Complex high dimensional
reputation
Serial Num e Multiple service providers
[old] [cur] can access different parts
of state

[new]

e Finite call retention with
0, lockout (delete old calls)

Performance: Microbenchmarks

Proving MakePostCircuit (log x log scale) Proving SweepCircuit

- sig
~#— tree 900 -
1041 3 ! }
800 A
- e
E "
£ £ 700-
g v
= E
§ gsoo-
500
400 -
10 102 o1t ' . ' ' T "
10 20 30 40 50 60

Tree Height
9 Tree Height

Performance: Microbenchmarks

e Making Posts (previous slide)

Batched Scan Circuit

. 14000 1 —%— tree, n=2
o 328 ms for depth 32 Merkle tree, scales linearly ~4— tree, n=4
with height 12000 & ::z: ::36
o 10x faster with signature, constant o tree, n=32
e Settling one callback (previous slide) 2
o 510 ms for depth 32 Merkle tree, scales linearly g S v
with height § | g
o 10x faster with signature, constant = 2
4000 + | e ——
e Chunked settle = | —
o Linear scaling 2000 1 4—4 e —e
‘:':/.F— —— -
. 1'0 2'0 370 4‘0 SYO 6'0

Tree Height

zk-promises

e Provides a generic framework See the eprint for more details!

extending zk-objects with callbacks https://ia.cr/2024/1260
e Implement an anonymous reputation
system through this framework

Programmable ‘ Asynchronous Scalable

