
zk-promises: Making zero-knowledge
objects accept the call for banning and

reputation
Maurice Shih, Michael Rosenberg, Hari Kailad, Ian Miers

Example: Wikipedia

Example: Wikipedia

Makes an edit

Example: Wikipedia

Makes an edit

Can now view
edit and decide
to ban user

Example: Wikipedia

Makes an edit

Anonymous

Example: Wikipedia

Makes an edit

Anonymous
How can the
service provider
know which user
to ban?

Example: Wikipedia

Makes an edit

Anonymous
How can the
service provider
know which user
to ban? Answer: Anonymous Blocklisting

Complex feedback?

Complex feedback?
Makes an edit

Anonymous

Complex feedback?
Makes an edit

Anonymous ● User has made k disinfo edits,
ban them 

Complex feedback?
Makes an edit

Anonymous ● User has made k disinfo edits,
ban them 

● Place user on probation for x
time 

Complex feedback?
Makes an edit

Anonymous ● User has made k disinfo edits,
ban them 

● Place user on probation for x
time 

● If the user has made k good
edits, increase their number
of edits per day 

Asynchronous?

Asynchronous?
Makes an edit

Anonymous

Asynchronous?
Makes an edit

Offline

��

Asynchronous?
Makes an edit

��
Reviews edit

User has made k disinfo edits,
ban them

Offline

Asynchronous?

Anonymous

Edit? ❌ Banned.

Prior Work

PEREA
- Limited functionality: No

complex feedback 
- Fixed parameters for all users 
- Moderation halts until oldest

are processed 

SnarkBlock
- Built only for blocklisting 
- Doesn’t support complex

state 

BLAC
- Does not support

programmable logic or
multidimensional state, only a
simple counter 

- Not asynchronous 
- Global halting 
- User does linear work in its

actions 
SMART
- State must be small 
- Does not support

arbitrary updates 

zk-promises
● Anonymous state 
● Fully programmable logic and

complex feedback 
● Completely asynchronous 
● Using zkSNARKs! 

Can use for…
● Forums with moderation 
● Oblivious VPNs (Apple, Cloudflare) 
● Whistleblowing applications 
● Cryptocurrency reputation 

zk-objects

● Reputation 
● Post Time 
● State3 
● … 
  Serial Num

Commitments to Objects

User Object O

Prove statements

● Reputation 
● Post Time 
● State3 
● … 
 

User Object O

Serial Num

Prove Com(O) ∊ bulletin 
and O.reputation > 30 

Object Updates

● Reputation 
● Post Time 
● State3 
● … 
 

O

Serial Num

𝛑: Com(O) ∊ bulletin, 
O.serial == SN, 

 Com(O’) == Com(O’) 
 𝚽(O, O’) == 1 

● Reputation’ 
● Post Time’ 
● State3’ 
● … 
 New Rand SN

O’

𝛑, SN, Com(O’)  

O’ = meth(O, pub) 

Object Updates

● Reputation 
● Post Time 
● State3 
● … 
 

O

Serial Num

𝛑: Com(O) ∊ bulletin, 
O.serial == SN, 

 Com(O’) == Com(O’) 
 𝚽(O, O’) == 1 

● Reputation’ 
● Post Time’ 
● State3’ 
● … 
 New Rand SN

O’

𝛑, SN, Com(O’)  

Only the object owner can call
this method.

O’ = meth(O, pub) 

Feedback Overview: Callbacks

● Reputation 
● Post Time 
● State3 
● … 
 
 
 

O

Serial Num 
[Callbacks] 

Here is a callback for
method(O)

Feedback Overview: Callbacks 

● Reputation 
● Post Time 
● State3 
● … 
 
 
 

O

Serial Num 
[Callbacks] 

Here is a callback for
method(O)

��
I now call method(O) 

Feedback Overview: Callbacks 

● Reputation 
● Post Time 
● State3 
● … 
 
 
 

O

Serial Num 
[Callbacks] 

Here is a callback for
method(O)

��
I now call method(O) 

● Reputation’ 
● Post Time’ 
● State3’ 
● … 
 
 
 

Serial Num 
[Callbacks] 

zk-promises: Base construction (Create)

● Reputation 
● Post Time 
● State3 
● … 
 
 
 

O

Serial Num 
 [Tickets] 

Here is a ticket T, 
𝝅, SN, Com(O’) 

𝛑: Com(O) ∊ bulletin, 
O.serial == SN, 

 Com(O’) == Com(O’) 
 𝚽(O, O’) == 1 
 O’.ticket_list = O.ticket_list + T 

zk-promises: Base construction (Call)

● Reputation 
● Post Time 
● State3 
● … 
 
 
 

O

Serial Num 
 [Tickets] 

T1  T2 T3 T4

All “Called”  
Tickets 

method(O’): Put T on
bulletin 

zk-promises: Base construction (Settle)

● Reputation 
● Post Time 
● State3 
● … 
 
 
 

O

Serial Num 
 [Tickets] 

zk-promises: Base construction (Settle)

● Reputation 
● Post Time 
● State3 
● … 
 
 
 

O

Serial Num 
 [Tickets] 

𝛑: For T ∊ [Tickets], 

zk-promises: Base construction (Settle)

● Reputation 
● Post Time 
● State3 
● … 
 
 
 

O

Serial Num 
 [Tickets] 

𝛑: For T ∊ [Tickets], 
 
● T ∊ callback bulletin, 

Removed T from [Tickets] 
O’ = method(O) 

zk-promises: Base construction (Settle)

● Reputation 
● Post Time 
● State3 
● … 
 
 
 

O

Serial Num 
 [Tickets] 

𝛑: For T ∊ [Tickets], 
 
● T ∊ callback bulletin, 

Removed T from [Tickets] 
O’ = method(O) 

● T ∉callback bulletin, 
T remains in [Tickets] 
O’ = O 

zk-promises: Base construction (Settle)

● Reputation 
● Post Time 
● State3 
● … 
 
 
 

O

Serial Num 
 [Tickets] 

𝛑: For T ∊ [Tickets], 
 
● T ∊ callback bulletin, 

Removed T from [Tickets] 
O’ = method(O) 

● T ∉callback bulletin, 
T remains in [Tickets] 
O’ = O 

Requires non-membership check 
 
 

zk-promises: Base construction (Settle)

● Reputation 
● Post Time 
● State3 
● … 
 
 
 

O

Serial Num 
 [Tickets] 

𝛑: For T ∊ [Tickets], 
 
● T ∊ callback bulletin, 

Removed T from [Tickets] 
O’ = method(O) 

● T ∉callback bulletin, 
T remains in [Tickets] 
O’ = O 

Requires non-membership check 
 
How do we have a list? 

Callback List

● Reputation 
● Post Time 
● State3 
● … 
 
 
 

O

Serial Num 
 [Tickets] 

List: Hash chain! 
Concretely: [T1 T2 …] is H(H(T1), T2) 

Callback List

● Reputation 
● Post Time 
● State3 
● … 
 
 
 

O

Serial Num 
 [Tickets] 

List: Hash chain! 
Concretely: [T1 T2 …] is H(H(T1), T2) 

T1

T2

T3

T4

T5

old cur new

Callback List

● Reputation 
● Post Time 
● State3 
● … 
 
 
 

O

Serial Num 
 [Tickets] 

List: Hash chain! 
Concretely: [T1 T2 …] is H(H(T1), T2) 

T1

T2

T3

T4

T5

old cur new

T1 T1

Callback List

● Reputation 
● Post Time 
● State3 
● … 
 
 
 

O

Serial Num 
 [Tickets] 

List: Hash chain! 
Concretely: [T1 T2 …] is H(H(T1), T2) 

T1

T2

T3

T4

T5

T2 T2

old cur new

T1 T1
Not been 
called 

Callback List

● Reputation 
● Post Time 
● State3 
● … 
 
 
 

O

Serial Num 
 [Tickets] 

List: Hash chain! 
Concretely: [T1 T2 …] is H(H(T1), T2) 

T1

T2

T3

T4

T5

T2

T3

T2

❌

old cur new

T1 T1
Not been 
called 

Called! 
apply method 

Callback List

● Reputation 
● Post Time 
● State3 
● … 
 
 
 

O

Serial Num 
 [Tickets] 

List: Hash chain! 
Concretely: [T1 T2 …] is H(H(T1), T2) 

T1

T2

T3

T4

T5

T2

T3

T4

T2

❌

T4

old cur new

T1 T1
Not been 
called 

Called! 
apply method 

Callback List

● Reputation 
● Post Time 
● State3 
● … 
 
 
 

O

Serial Num 
 [Tickets] 

List: Hash chain! 
Concretely: [T1 T2 …] is H(H(T1), T2) 

T1

T2

T3

T4

T5

T2

T3

T4

T5

T2

❌

T4

❌

old cur new

T1 T1
Not been 
called 

Called! 
apply method 

zk-promises Base construction

● Reputation 
● Post Time 
● State3 
● … 
 
 
 

O

Serial Num 
 [old] [cur] 

[new] 
𝛑: Rupdate  
and Rsettle  
and Rcreate 

When making a forum post:

● Reputation’ 
● Post Time’ 
● State3’ 
● … 
 
 
 

New Rand SN 
[old’] [cur’] 

[new’] 

Here is a callback for
method(O), SN, 𝛑

More Features

● Reputation 
● Post Time 
● State3 
● … 
 
 
 

O

Serial Num 
[old] [cur] 

[new] 

Expiry: Store (callback, expiry) 

Here is a ticket (T, exp), 
𝝅, SN, Com(O’) 

More Features

● Reputation 
● Post Time 
● State3 
● … 
 
 
 

O

Serial Num 
[old] [cur] 

[new] 

Method Arguments! 

Here is a ticket (T, exp, key), 
𝝅, SN, Com(O’) 

Call method: 
method(O, args) 
 
Post (T, Enckey(args)) 

More Features

● Reputation 
● Post Time 
● State3 
● … 
 
 
 

O

Serial Num 
[old] [cur] 

[new] 

Separate Callback Bulletin
and Service Provider 

More Features

● Reputation 
● Post Time 
● State3 
● … 
 
 
 

O

Serial Num 
[old] [cur] 

[new] 

Separate Callback Bulletin
and Service Provider 

● Create Post + Call
unlinkability: Reveal
Com(T) 

More Features

● Reputation 
● Post Time 
● State3 
● … 
 
 
 

O

Serial Num 
[old] [cur] 

[new] 

Separate Callback Bulletin
and Service Provider 

● Create Post + Call
unlinkability: Reveal
Com(T) 

● Ensure correct service
provider: Sign arguments
with ticket as public key 

Application Specific

● Reputation 
● Post Time 
● State3 
● … 
 
 
 

O

Serial Num 
[old] [cur] 

[new] 

● Rate Limiting (leaky
bucket) 

Application Specific

● Reputation 
● Post Time 
● State3 
● … 
 
 
 

O

Serial Num 
[old] [cur] 

[new] 

● Rate Limiting (leaky
bucket) 

● Complex high dimensional
reputation 

Application Specific

● Reputation 
● Post Time 
● State3 
● … 
 
 
 

O

Serial Num 
[old] [cur] 

[new] 

● Rate Limiting (leaky
bucket) 

● Complex high dimensional
reputation 

● Multiple service providers
can access different parts
of state 

Application Specific

● Reputation 
● Post Time 
● State3 
● … 
 
 
 

O

Serial Num 
[old] [cur] 

[new] 

● Rate Limiting (leaky
bucket) 

● Complex high dimensional
reputation 

● Multiple service providers
can access different parts
of state 

● Finite call retention with
lockout (delete old calls) 

Performance: Microbenchmarks

Performance: Microbenchmarks

● Making Posts (previous slide) 
○ 328 ms for depth 32 Merkle tree, scales linearly

with height 
○ 10x faster with signature, constant 

● Settling one callback (previous slide) 
○ 510 ms for depth 32 Merkle tree, scales linearly

with height 
○ 10x faster with signature, constant 

● Chunked settle 
○ Linear scaling 

zk-promises

Programmable Asynchronous Scalable

● Provides a generic framework
extending zk-objects with callbacks 

● Implement an anonymous reputation
system through this framework 

See the eprint for more details! 
https://ia.cr/2024/1260 

